{"title":"SeekSpace解决胎儿肝脏造血的空间组织。","authors":"Xinyu Thomas Tang, Lin Veronica Chen, Bo O Zhou","doi":"10.1186/s13619-025-00234-0","DOIUrl":null,"url":null,"abstract":"<p><p>The fetal liver is the primary site for the expansion of hematopoietic stem and progenitor cells (HSPCs) during fetal hematopoiesis. However, the spatial organization of different hematopoietic progenitor populations within the fetal liver remains poorly characterized. In this study, we utilized SeekSpace, a high-resolution single-nucleus spatial transcriptomics platform, to map the spatial distribution of hematopoietic stem cells and multipotent progenitor cells (HSC/MPPs) and downstream restricted progenitors (RPs) in relation to other hematopoietic and stromal cell populations in the fetal liver at embryonic day 13.5. Using SeekSpace, we constructed a detailed single-cell spatial transcriptomic atlas of fetal liver hematopoiesis, revealing that both HSC/MPPs and many RPs undergo active expansion in the fetal liver, a process distinct from their behavior in adult bone marrow. Proximity analysis and in situ imaging demonstrated that HSC/MPPs expansion occurs in close association with macrophages and endothelial cells throughout the fetal liver, supported by signaling pathways involving IGF and collagen. In contrast, RPs exhibited no specific spatial proximity to other cell populations during their expansion. Collectively, this study provides a comprehensive resource for understanding the spatial and molecular mechanisms underlying HSC/MPPs and RP expansion during fetal liver hematopoiesis.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"15"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resolving the spatial organization of fetal liver hematopoiesis by SeekSpace.\",\"authors\":\"Xinyu Thomas Tang, Lin Veronica Chen, Bo O Zhou\",\"doi\":\"10.1186/s13619-025-00234-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fetal liver is the primary site for the expansion of hematopoietic stem and progenitor cells (HSPCs) during fetal hematopoiesis. However, the spatial organization of different hematopoietic progenitor populations within the fetal liver remains poorly characterized. In this study, we utilized SeekSpace, a high-resolution single-nucleus spatial transcriptomics platform, to map the spatial distribution of hematopoietic stem cells and multipotent progenitor cells (HSC/MPPs) and downstream restricted progenitors (RPs) in relation to other hematopoietic and stromal cell populations in the fetal liver at embryonic day 13.5. Using SeekSpace, we constructed a detailed single-cell spatial transcriptomic atlas of fetal liver hematopoiesis, revealing that both HSC/MPPs and many RPs undergo active expansion in the fetal liver, a process distinct from their behavior in adult bone marrow. Proximity analysis and in situ imaging demonstrated that HSC/MPPs expansion occurs in close association with macrophages and endothelial cells throughout the fetal liver, supported by signaling pathways involving IGF and collagen. In contrast, RPs exhibited no specific spatial proximity to other cell populations during their expansion. Collectively, this study provides a comprehensive resource for understanding the spatial and molecular mechanisms underlying HSC/MPPs and RP expansion during fetal liver hematopoiesis.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"14 1\",\"pages\":\"15\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-025-00234-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00234-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Resolving the spatial organization of fetal liver hematopoiesis by SeekSpace.
The fetal liver is the primary site for the expansion of hematopoietic stem and progenitor cells (HSPCs) during fetal hematopoiesis. However, the spatial organization of different hematopoietic progenitor populations within the fetal liver remains poorly characterized. In this study, we utilized SeekSpace, a high-resolution single-nucleus spatial transcriptomics platform, to map the spatial distribution of hematopoietic stem cells and multipotent progenitor cells (HSC/MPPs) and downstream restricted progenitors (RPs) in relation to other hematopoietic and stromal cell populations in the fetal liver at embryonic day 13.5. Using SeekSpace, we constructed a detailed single-cell spatial transcriptomic atlas of fetal liver hematopoiesis, revealing that both HSC/MPPs and many RPs undergo active expansion in the fetal liver, a process distinct from their behavior in adult bone marrow. Proximity analysis and in situ imaging demonstrated that HSC/MPPs expansion occurs in close association with macrophages and endothelial cells throughout the fetal liver, supported by signaling pathways involving IGF and collagen. In contrast, RPs exhibited no specific spatial proximity to other cell populations during their expansion. Collectively, this study provides a comprehensive resource for understanding the spatial and molecular mechanisms underlying HSC/MPPs and RP expansion during fetal liver hematopoiesis.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine