{"title":"Alternative splicing in stem cells and development: research progress and emerging technologies.","authors":"Yan Jin, XiaoLin Liang, Xiangting Wang","doi":"10.1186/s13619-025-00238-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing is a key regulatory mechanism that generates transcriptomic diversity by selectively splicing pre-RNA molecules in different ways, leading to the production of multiple RNA isoforms from a single gene. This process is crucial for the fine-tuning of gene expression and is tightly regulated during various biological processes. Recent studies have highlighted how alternative splicing contributes to stem cells self-renewal and differentiation, as well as how dysregulation of splicing factors can impact stem cells behavior and lead to developmental abnormalities or diseases. This review summarizes the current understanding of alternative splicing in stem cells and development, focusing on the molecular mechanisms that govern alternative splicing regulation, the role of splicing factors, and the impact of splicing isoforms on stem cell fate determination and developmental processes. We also discuss emerging technologies, such as CRISPR/Cas-based tools, single-cell long-read RNA sequencing, imaging technologies and 3D culture systems, which are advancing our ability to study alternative splicing in vitro and in vivo. Overall, this field is rapidly evolving, revealing new insights into how alternative splicing shapes the molecular landscape and functions of stem cells and developmental processes.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"20"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00238-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Alternative splicing is a key regulatory mechanism that generates transcriptomic diversity by selectively splicing pre-RNA molecules in different ways, leading to the production of multiple RNA isoforms from a single gene. This process is crucial for the fine-tuning of gene expression and is tightly regulated during various biological processes. Recent studies have highlighted how alternative splicing contributes to stem cells self-renewal and differentiation, as well as how dysregulation of splicing factors can impact stem cells behavior and lead to developmental abnormalities or diseases. This review summarizes the current understanding of alternative splicing in stem cells and development, focusing on the molecular mechanisms that govern alternative splicing regulation, the role of splicing factors, and the impact of splicing isoforms on stem cell fate determination and developmental processes. We also discuss emerging technologies, such as CRISPR/Cas-based tools, single-cell long-read RNA sequencing, imaging technologies and 3D culture systems, which are advancing our ability to study alternative splicing in vitro and in vivo. Overall, this field is rapidly evolving, revealing new insights into how alternative splicing shapes the molecular landscape and functions of stem cells and developmental processes.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine