{"title":"女性生殖系干细胞:最新进展、机遇和需要克服的挑战。","authors":"Yaoqi Huang, Haifeng Ye","doi":"10.1186/s13619-025-00256-8","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of reproductive medicine, delaying ovarian aging and preserving fertility in cancer patients have long been core issues and relentless pursuits. Female germline stem cells (FGSCs) have been shown to repair aging or damaged ovarian structures and to restore ovarian reproductive and endocrine function. With their unlimited proliferation and directed differentiation into oocytes, FGSCs bring new hope to patients with ovarian insufficiency, malignant tumors, and others needing fertility preservation. In this review, we introduce the role of FGSCs in ovarian fertility preservation and regenerative repair, emphasizing the regulatory pathways of FGSCs in restoring ovarian function. We discuss the unique advantages of FGSCs in infertility treatment, including fertility preservation, animal gene editing, and regenerative medicine. This article aims to offer new research insights for advancing the clinical translation of FGSCs by exploring them from multiple perspectives, such as origin, regulation, and application.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"34"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Female germline stem cells: recent advances, opportunities, and challenges to overcome.\",\"authors\":\"Yaoqi Huang, Haifeng Ye\",\"doi\":\"10.1186/s13619-025-00256-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of reproductive medicine, delaying ovarian aging and preserving fertility in cancer patients have long been core issues and relentless pursuits. Female germline stem cells (FGSCs) have been shown to repair aging or damaged ovarian structures and to restore ovarian reproductive and endocrine function. With their unlimited proliferation and directed differentiation into oocytes, FGSCs bring new hope to patients with ovarian insufficiency, malignant tumors, and others needing fertility preservation. In this review, we introduce the role of FGSCs in ovarian fertility preservation and regenerative repair, emphasizing the regulatory pathways of FGSCs in restoring ovarian function. We discuss the unique advantages of FGSCs in infertility treatment, including fertility preservation, animal gene editing, and regenerative medicine. This article aims to offer new research insights for advancing the clinical translation of FGSCs by exploring them from multiple perspectives, such as origin, regulation, and application.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"14 1\",\"pages\":\"34\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-025-00256-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00256-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Female germline stem cells: recent advances, opportunities, and challenges to overcome.
In the field of reproductive medicine, delaying ovarian aging and preserving fertility in cancer patients have long been core issues and relentless pursuits. Female germline stem cells (FGSCs) have been shown to repair aging or damaged ovarian structures and to restore ovarian reproductive and endocrine function. With their unlimited proliferation and directed differentiation into oocytes, FGSCs bring new hope to patients with ovarian insufficiency, malignant tumors, and others needing fertility preservation. In this review, we introduce the role of FGSCs in ovarian fertility preservation and regenerative repair, emphasizing the regulatory pathways of FGSCs in restoring ovarian function. We discuss the unique advantages of FGSCs in infertility treatment, including fertility preservation, animal gene editing, and regenerative medicine. This article aims to offer new research insights for advancing the clinical translation of FGSCs by exploring them from multiple perspectives, such as origin, regulation, and application.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine