Chang-Ping Li, Ying-Ying Wang, Ching-Wei Zhou, Chen-Yun Ding, Peng Teng, Rui Nie, Shu-Guang Yang
{"title":"神经再生的尖端技术。","authors":"Chang-Ping Li, Ying-Ying Wang, Ching-Wei Zhou, Chen-Yun Ding, Peng Teng, Rui Nie, Shu-Guang Yang","doi":"10.1186/s13619-025-00260-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neural regeneration stands at the forefront of neuroscience, aiming to repair and restore function to damaged neural tissues, particularly within the central nervous system (CNS), where regenerative capacity is inherently limited. However, recent breakthroughs in biotechnology, especially the revolutions in genetic engineering, materials science, multi-omics, and imaging, have promoted the development of neural regeneration. This review highlights the latest cutting-edge technologies driving progress in the field, including optogenetics, chemogenetics, three-dimensional (3D) culture models, gene editing, single-cell sequencing, and 3D imaging. Prospectively, the advancements in artificial intelligence (AI), high-throughput in vivo screening, and brain-computer interface (BCI) technologies promise to accelerate discoveries in neural regeneration further, paving the way for more precise, efficient, and personalized therapeutic strategies. The convergence of these multidisciplinary approaches holds immense potential for developing transformative treatments for neural injuries and neurological disorders, ultimately improving functional recovery.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"38"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cutting-edge technologies in neural regeneration.\",\"authors\":\"Chang-Ping Li, Ying-Ying Wang, Ching-Wei Zhou, Chen-Yun Ding, Peng Teng, Rui Nie, Shu-Guang Yang\",\"doi\":\"10.1186/s13619-025-00260-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural regeneration stands at the forefront of neuroscience, aiming to repair and restore function to damaged neural tissues, particularly within the central nervous system (CNS), where regenerative capacity is inherently limited. However, recent breakthroughs in biotechnology, especially the revolutions in genetic engineering, materials science, multi-omics, and imaging, have promoted the development of neural regeneration. This review highlights the latest cutting-edge technologies driving progress in the field, including optogenetics, chemogenetics, three-dimensional (3D) culture models, gene editing, single-cell sequencing, and 3D imaging. Prospectively, the advancements in artificial intelligence (AI), high-throughput in vivo screening, and brain-computer interface (BCI) technologies promise to accelerate discoveries in neural regeneration further, paving the way for more precise, efficient, and personalized therapeutic strategies. The convergence of these multidisciplinary approaches holds immense potential for developing transformative treatments for neural injuries and neurological disorders, ultimately improving functional recovery.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"14 1\",\"pages\":\"38\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-025-00260-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00260-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Neural regeneration stands at the forefront of neuroscience, aiming to repair and restore function to damaged neural tissues, particularly within the central nervous system (CNS), where regenerative capacity is inherently limited. However, recent breakthroughs in biotechnology, especially the revolutions in genetic engineering, materials science, multi-omics, and imaging, have promoted the development of neural regeneration. This review highlights the latest cutting-edge technologies driving progress in the field, including optogenetics, chemogenetics, three-dimensional (3D) culture models, gene editing, single-cell sequencing, and 3D imaging. Prospectively, the advancements in artificial intelligence (AI), high-throughput in vivo screening, and brain-computer interface (BCI) technologies promise to accelerate discoveries in neural regeneration further, paving the way for more precise, efficient, and personalized therapeutic strategies. The convergence of these multidisciplinary approaches holds immense potential for developing transformative treatments for neural injuries and neurological disorders, ultimately improving functional recovery.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine