药物诱导胰腺细胞再生:一种细胞治疗靶点的方法。

IF 4.7 Q2 CELL & TISSUE ENGINEERING
Parinaz Parsi, Saber Saharkhiz, Marzieh Ramezani Farani, Salar Bakhtiyari, Iraj Alipourfard
{"title":"药物诱导胰腺细胞再生:一种细胞治疗靶点的方法。","authors":"Parinaz Parsi, Saber Saharkhiz, Marzieh Ramezani Farani, Salar Bakhtiyari, Iraj Alipourfard","doi":"10.1186/s13619-025-00255-9","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels. For this reason, therapeutic agents capable of inducing beta cell proliferation can be considered a possible approach to restore beta cell abundance and treat type 1 and type 2 diabetes. Although several methods have been found to promote the replication of beta cells in animal models or cell lines, it is still challenging to promote the effective proliferation of beta cells in humans. This review highlights the different agents and mechanisms that facilitate pancreatic beta cell regeneration. Numerous small molecules have been discovered to influence beta cell proliferation, primarily by targeting cellular pathways such as DYRK1A, adenosine kinase, SIK, and glucokinase. Additionally, receptors for TGF-β, EGF, insulin, glucagon, GLP-1, SGLT2 inhibitors, and prolactin play critical roles in this process. Stem cell-based clinical trials are also underway to assess the safety and efficacy of stem cell therapies for patients with type 1 and type 2 diabetes. We have emphasized alternative therapeutic pathways and related strategies that may be employed to promote the regeneration of pancreatic beta cells. The knowledge raised within this review may help to understand the potential drug-inducible targets for beta cell regeneration and pave the way for further investigations.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"39"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.\",\"authors\":\"Parinaz Parsi, Saber Saharkhiz, Marzieh Ramezani Farani, Salar Bakhtiyari, Iraj Alipourfard\",\"doi\":\"10.1186/s13619-025-00255-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels. For this reason, therapeutic agents capable of inducing beta cell proliferation can be considered a possible approach to restore beta cell abundance and treat type 1 and type 2 diabetes. Although several methods have been found to promote the replication of beta cells in animal models or cell lines, it is still challenging to promote the effective proliferation of beta cells in humans. This review highlights the different agents and mechanisms that facilitate pancreatic beta cell regeneration. Numerous small molecules have been discovered to influence beta cell proliferation, primarily by targeting cellular pathways such as DYRK1A, adenosine kinase, SIK, and glucokinase. Additionally, receptors for TGF-β, EGF, insulin, glucagon, GLP-1, SGLT2 inhibitors, and prolactin play critical roles in this process. Stem cell-based clinical trials are also underway to assess the safety and efficacy of stem cell therapies for patients with type 1 and type 2 diabetes. We have emphasized alternative therapeutic pathways and related strategies that may be employed to promote the regeneration of pancreatic beta cells. The knowledge raised within this review may help to understand the potential drug-inducible targets for beta cell regeneration and pave the way for further investigations.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"14 1\",\"pages\":\"39\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-025-00255-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00255-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是全球常见的严重代谢性疾病,其特征是血糖水平升高。主要发病机制是胰腺中产生胰岛素的β细胞功能受损和胰岛素分泌不足。尽管1型和2型糖尿病通过不同的病理机制发展,但它们都会导致β细胞的破坏和/或功能障碍,导致β细胞数量不足,无法维持正常的血糖水平。因此,能够诱导β细胞增殖的治疗剂可以被认为是恢复β细胞丰度和治疗1型和2型糖尿病的可能方法。虽然在动物模型或细胞系中已经发现了几种促进β细胞复制的方法,但在人体中促进β细胞的有效增殖仍然具有挑战性。这篇综述强调了促进胰腺细胞再生的不同药物和机制。许多小分子已经被发现影响β细胞增殖,主要是通过靶向细胞通路,如DYRK1A、腺苷激酶、SIK和葡萄糖激酶。此外,TGF-β、EGF、胰岛素、胰高血糖素、GLP-1、SGLT2抑制剂和催乳素受体在这一过程中也起着关键作用。基于干细胞的临床试验也在进行中,以评估干细胞治疗1型和2型糖尿病患者的安全性和有效性。我们强调了可能用于促进胰腺β细胞再生的替代治疗途径和相关策略。本综述中提出的知识可能有助于了解β细胞再生的潜在药物诱导靶点,并为进一步的研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.

Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.

Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.

Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.

Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels. For this reason, therapeutic agents capable of inducing beta cell proliferation can be considered a possible approach to restore beta cell abundance and treat type 1 and type 2 diabetes. Although several methods have been found to promote the replication of beta cells in animal models or cell lines, it is still challenging to promote the effective proliferation of beta cells in humans. This review highlights the different agents and mechanisms that facilitate pancreatic beta cell regeneration. Numerous small molecules have been discovered to influence beta cell proliferation, primarily by targeting cellular pathways such as DYRK1A, adenosine kinase, SIK, and glucokinase. Additionally, receptors for TGF-β, EGF, insulin, glucagon, GLP-1, SGLT2 inhibitors, and prolactin play critical roles in this process. Stem cell-based clinical trials are also underway to assess the safety and efficacy of stem cell therapies for patients with type 1 and type 2 diabetes. We have emphasized alternative therapeutic pathways and related strategies that may be employed to promote the regeneration of pancreatic beta cells. The knowledge raised within this review may help to understand the potential drug-inducible targets for beta cell regeneration and pave the way for further investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信