{"title":"化学重编程的无转基因小鼠胚胎模型达到早期器官发生。","authors":"Xiu Yu, Jichang Wang","doi":"10.1186/s13619-025-00259-5","DOIUrl":null,"url":null,"abstract":"<p><p>Embryo models derived from pluripotent stem cells (PSCs) have become powerful tools for dissecting mammalian embryonic development and advancing regenerative medicine. Two recent studies in Cell and Cell Stem Cell report major advances in generating mouse embryo models that replicate development up to early organogenesis (equivalent to embryonic day 8.5~8.75). Li et al. describe a purely chemical strategy to reprogram mouse embryonic stem cells (mESCs) into induced embryo founder cells (iEFCs) capable of forming complete embryo models (iEFC-EMs). In parallel, Yilmaz et al. demonstrate transgene-free generation of post-gastrulation models (TF-SEMs) from naive mESCs and induced pluripotent stem cells (iPSCs) using a similar chemical cocktail. Both models faithfully recapitulate key developmental events, including gastrulation, neural tube formation, cardiogenesis, and somitogenesis. These advances not only deepen understanding of early mammalian development but also pave the way for applications in regenerative medicine and disease modeling.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"37"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transgene-free mouse embryo models from chemical reprogramming reach early organogenesis.\",\"authors\":\"Xiu Yu, Jichang Wang\",\"doi\":\"10.1186/s13619-025-00259-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embryo models derived from pluripotent stem cells (PSCs) have become powerful tools for dissecting mammalian embryonic development and advancing regenerative medicine. Two recent studies in Cell and Cell Stem Cell report major advances in generating mouse embryo models that replicate development up to early organogenesis (equivalent to embryonic day 8.5~8.75). Li et al. describe a purely chemical strategy to reprogram mouse embryonic stem cells (mESCs) into induced embryo founder cells (iEFCs) capable of forming complete embryo models (iEFC-EMs). In parallel, Yilmaz et al. demonstrate transgene-free generation of post-gastrulation models (TF-SEMs) from naive mESCs and induced pluripotent stem cells (iPSCs) using a similar chemical cocktail. Both models faithfully recapitulate key developmental events, including gastrulation, neural tube formation, cardiogenesis, and somitogenesis. These advances not only deepen understanding of early mammalian development but also pave the way for applications in regenerative medicine and disease modeling.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":\"14 1\",\"pages\":\"37\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-025-00259-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00259-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Transgene-free mouse embryo models from chemical reprogramming reach early organogenesis.
Embryo models derived from pluripotent stem cells (PSCs) have become powerful tools for dissecting mammalian embryonic development and advancing regenerative medicine. Two recent studies in Cell and Cell Stem Cell report major advances in generating mouse embryo models that replicate development up to early organogenesis (equivalent to embryonic day 8.5~8.75). Li et al. describe a purely chemical strategy to reprogram mouse embryonic stem cells (mESCs) into induced embryo founder cells (iEFCs) capable of forming complete embryo models (iEFC-EMs). In parallel, Yilmaz et al. demonstrate transgene-free generation of post-gastrulation models (TF-SEMs) from naive mESCs and induced pluripotent stem cells (iPSCs) using a similar chemical cocktail. Both models faithfully recapitulate key developmental events, including gastrulation, neural tube formation, cardiogenesis, and somitogenesis. These advances not only deepen understanding of early mammalian development but also pave the way for applications in regenerative medicine and disease modeling.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine