{"title":"Drug-induced regeneration of pancreatic beta cells: An approach to cellular therapeutic targets.","authors":"Parinaz Parsi, Saber Saharkhiz, Marzieh Ramezani Farani, Salar Bakhtiyari, Iraj Alipourfard","doi":"10.1186/s13619-025-00255-9","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels. For this reason, therapeutic agents capable of inducing beta cell proliferation can be considered a possible approach to restore beta cell abundance and treat type 1 and type 2 diabetes. Although several methods have been found to promote the replication of beta cells in animal models or cell lines, it is still challenging to promote the effective proliferation of beta cells in humans. This review highlights the different agents and mechanisms that facilitate pancreatic beta cell regeneration. Numerous small molecules have been discovered to influence beta cell proliferation, primarily by targeting cellular pathways such as DYRK1A, adenosine kinase, SIK, and glucokinase. Additionally, receptors for TGF-β, EGF, insulin, glucagon, GLP-1, SGLT2 inhibitors, and prolactin play critical roles in this process. Stem cell-based clinical trials are also underway to assess the safety and efficacy of stem cell therapies for patients with type 1 and type 2 diabetes. We have emphasized alternative therapeutic pathways and related strategies that may be employed to promote the regeneration of pancreatic beta cells. The knowledge raised within this review may help to understand the potential drug-inducible targets for beta cell regeneration and pave the way for further investigations.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"39"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00255-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels. For this reason, therapeutic agents capable of inducing beta cell proliferation can be considered a possible approach to restore beta cell abundance and treat type 1 and type 2 diabetes. Although several methods have been found to promote the replication of beta cells in animal models or cell lines, it is still challenging to promote the effective proliferation of beta cells in humans. This review highlights the different agents and mechanisms that facilitate pancreatic beta cell regeneration. Numerous small molecules have been discovered to influence beta cell proliferation, primarily by targeting cellular pathways such as DYRK1A, adenosine kinase, SIK, and glucokinase. Additionally, receptors for TGF-β, EGF, insulin, glucagon, GLP-1, SGLT2 inhibitors, and prolactin play critical roles in this process. Stem cell-based clinical trials are also underway to assess the safety and efficacy of stem cell therapies for patients with type 1 and type 2 diabetes. We have emphasized alternative therapeutic pathways and related strategies that may be employed to promote the regeneration of pancreatic beta cells. The knowledge raised within this review may help to understand the potential drug-inducible targets for beta cell regeneration and pave the way for further investigations.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine