Cell CyclePub Date : 2024-07-01Epub Date: 2025-04-22DOI: 10.1080/15384101.2025.2485842
Lia Mara Gomes Paim, Susanne Bechstedt
{"title":"Regulation of microtubule growth rates and their impact on chromosomal instability.","authors":"Lia Mara Gomes Paim, Susanne Bechstedt","doi":"10.1080/15384101.2025.2485842","DOIUrl":"10.1080/15384101.2025.2485842","url":null,"abstract":"<p><p>Microtubules are polymers of α/β tubulin dimers that build the mitotic spindle, which segregates duplicated chromosomes during cell division. Microtubule function is governed by dynamic instability, whereby cycles of growth and shrinkage contribute to the forces necessary for chromosome movement. Regulation of microtubule growth velocity requires cell cycle-dependent changes in expression, localization and activity of microtubule-associated proteins (MAPs) as well as tubulin post-translational modifications that modulate microtubule dynamics. It has become clear that optimal microtubule growth velocities are required for proper chromosome segregation and ploidy maintenance. Suboptimal microtubule growth rates can result from altered activity of MAPs and could lead to aneuploidy, possibly by disrupting the establishment of microtubule bundles at kinetochores and altering the mechanical forces required for sister chromatid segregation. Future work using high-resolution, low-phototoxicity microscopy and novel fluorescent markers will be invaluable in obtaining deeper mechanistic insights into how microtubule processes contribute to chromosome segregation.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"872-891"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-07-01Epub Date: 2025-04-10DOI: 10.1080/15384101.2025.2485837
Athira Jyothy, Julfequar Hussain, Sharanya C S, Vineetha Radhakrishnan Chandraprabha, Madhumathy G Nair, Smreti Vasudevan, Hariharan Sreedharan, Betty Abraham, Tessy Thomas Maliekal, Kathiresan Natarajan, Suparna Sengupta
{"title":"α-Fodrin-CENP-E interaction is critical for pancreatic cancer progression and drug response.","authors":"Athira Jyothy, Julfequar Hussain, Sharanya C S, Vineetha Radhakrishnan Chandraprabha, Madhumathy G Nair, Smreti Vasudevan, Hariharan Sreedharan, Betty Abraham, Tessy Thomas Maliekal, Kathiresan Natarajan, Suparna Sengupta","doi":"10.1080/15384101.2025.2485837","DOIUrl":"10.1080/15384101.2025.2485837","url":null,"abstract":"<p><p>α-Fodrin, a known scaffolding protein for cytoskeleton stabilization, performs various functions including cell adhesion, cell motility, DNA repair and apoptosis. Based on our previous results revealing its role in mitosis in glioblastoma, we have examined its effect in pancreatic cancer, which is often linked to mitotic aberrations including aneuploidy and chromosome instability. Here, we show that the expression of α-Fodrin increases in pancreatic adenocarcinoma tissues compared to its normal counterpart, suggesting its tumor promoting role. shRNA-mediated knock-down of α-Fodrin significantly reduces the xenograft growth in immunocompromised mice underscoring the importance of α-Fodrin in tumor progression. CENP-E (centromere-associated protein E) is a motor protein essential for chromosomal alignment and segregation during mitosis. We have found that α-Fodrin interacts with CENP-E to recruit it to the kinetochore and depletion of α-Fodrin has a crucial role in controlling aneuploidy. As these mitotic defects can lead to apoptosis, we have further evaluated the activation of possible upstream pathways. Paclitaxel, a chemotherapeutic agent that stabilizes microtubules, disrupts mitosis and induces apoptosis. We found that Paclitaxel triggered stronger activation of JNK, ERK, and P38 MAPKs, altered BCL2/BAX ratios, cytochrome C release causing increased apoptosis in α-Fodrin knockdown cells compared to cells with wild-type α-Fodrin. This enhanced sensitivity to paclitaxel is consistent with improved survival in pancreatic cancer patients with low α-Fodrin (<i>SPTAN1</i>) and low CENP-E expression compared to poor prognosis with high expressions of both the genes. Taken together, this study provides the molecular mechanism by which α-Fodrin - CENP-E axis regulates pancreatic cancer progression and drug response.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"847-871"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-07-01Epub Date: 2024-07-04DOI: 10.1080/15384101.2024.2370718
{"title":"Statement of Retraction: Hsa-miR-425-5p promotes tumor growth and metastasis by activating the CTNND1-mediated β-catenin pathway and EMT in colorectal cancer.","authors":"","doi":"10.1080/15384101.2024.2370718","DOIUrl":"10.1080/15384101.2024.2370718","url":null,"abstract":"","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"ii"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-07-01Epub Date: 2024-07-04DOI: 10.1080/15384101.2024.2370721
{"title":"Statement of Retraction: Polyphyllin I, a lethal partner of Palbociclib, suppresses non-small cell lung cancer through activation of p21/CDK2/Rb pathway in vitro and in vivo.","authors":"","doi":"10.1080/15384101.2024.2370721","DOIUrl":"10.1080/15384101.2024.2370721","url":null,"abstract":"","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"iv"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-07-01Epub Date: 2025-03-27DOI: 10.1080/15384101.2025.2463772
{"title":"Expression of Concern: ATM-dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage.","authors":"","doi":"10.1080/15384101.2025.2463772","DOIUrl":"10.1080/15384101.2025.2463772","url":null,"abstract":"","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"892"},"PeriodicalIF":3.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-05-25DOI: 10.1080/15384101.2024.2355008
Xi Liu, Jia Gu, Cheng Wang, Min Peng, Jilin Zhou, Xiyun Fei, Zhijun Zhong, Bo Li
{"title":"Ginsenoside Rg3 attenuates neuroinflammation and hippocampal neuronal damage after traumatic brain injury in mice by inactivating the NF-kB pathway via SIRT1 activation","authors":"Xi Liu, Jia Gu, Cheng Wang, Min Peng, Jilin Zhou, Xiyun Fei, Zhijun Zhong, Bo Li","doi":"10.1080/15384101.2024.2355008","DOIUrl":"https://doi.org/10.1080/15384101.2024.2355008","url":null,"abstract":"This investigation examined the potential of ginsenoside Rg3 in addressing traumatic brain injury (TBI). A TBI mouse model underwent treatment with ginsenoside Rg3 and nicotinamide (NAM). Neurologi...","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":"73 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-05-01Epub Date: 2024-07-04DOI: 10.1080/15384101.2024.2370712
{"title":"Statement of Retraction: Overexpression of HIF-1α protects PC12 cells against OGD/R-evoked injury by reducing miR-134 expression.","authors":"","doi":"10.1080/15384101.2024.2370712","DOIUrl":"10.1080/15384101.2024.2370712","url":null,"abstract":"","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"ii"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell CyclePub Date : 2024-05-01Epub Date: 2024-09-16DOI: 10.1080/15384101.2024.2402192
Cristina Ros-Carrero, Mercè Gomar-Alba, J Carlos Igual
{"title":"Cell cycle regulated expression of the <i>WHI7</i> Start repressor gene.","authors":"Cristina Ros-Carrero, Mercè Gomar-Alba, J Carlos Igual","doi":"10.1080/15384101.2024.2402192","DOIUrl":"10.1080/15384101.2024.2402192","url":null,"abstract":"<p><p>Periodic transcriptional waves along the cell cycle ensure the accurate progression of the different cell cycle phases through the timely regulated expression of cell cycle proteins. The G1/S transition (Start) consists in the activation of a transcriptional program by G1 CDKs through the inactivation of Start transcriptional repressors, Whi5 and Whi7 in yeast or Rb in mammals. Here, we provide a comprehensive characterization of the transcriptional regulation of the Start repressor Whi7 in budding yeast. We found that <i>WHI7</i> is a cell cycle regulated gene that shows periodic expression peaking in G1. Our results demonstrate that the three cell cycle transcriptional programs related to G1 and their corresponding transcription factors are involved in the transcriptional control of <i>WHI7</i>. Specifically, we identified that the transcriptional regulators Swi5 and Mcm1-Yox1, which are involved in late M and early G1 expression, and the transcription factors MBF and SBF, which are responsible for G1/S expression, are able to associate and regulate the <i>WHI7</i> gene. In summary, in this work, we provide new mechanisms for the regulation of the Start repressor Whi7, which highlights the precise and complex control of the cell cycle machinery governing the G1/S transition.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"817-833"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}