赖氨酸甲基转移酶SET8对BRCA1信号的细胞周期依赖性抑制。

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Yannick Perez, Fatima Alhourani, Julie Patouillard, Cyril Ribeyre, Marion Larroque, Véronique Baldin, David Lleres, Charlotte Grimaud, Eric Julien
{"title":"赖氨酸甲基转移酶SET8对BRCA1信号的细胞周期依赖性抑制。","authors":"Yannick Perez, Fatima Alhourani, Julie Patouillard, Cyril Ribeyre, Marion Larroque, Véronique Baldin, David Lleres, Charlotte Grimaud, Eric Julien","doi":"10.1080/15384101.2025.2508114","DOIUrl":null,"url":null,"abstract":"<p><p>The cell-cycle regulated methyltransferase SET8 is the sole enzyme responsible for the mono-methylation of histone H4 at lysine 20 (H4K20) that is the substrate for di- and trimethylation mainly by SUV4-20Hs enzymes. Both SET8 and SUV4-20Hs have been implicated in regulating DNA repair pathway choice through the inverse affinities of BRCA1-BARD1 and 53BP1 complexes for disparate methylation states of H4K20. However, the precise and respective functions of each H4K20 methyltransferase in DNA repair pathways remain to be clarified. Here, we show that SET8 acts as a potent chromatin inhibitor of homologous recombination and that its timely degradation during DNA replication is essential for the spontaneous nuclear focal accumulation of BRCA1 and RAD51 complexes during the S phase. Strikingly, the anti-recombinogenic function of SET8 is independent of SUV4-20H activity but requires the subsequent recruitment of the ubiquitin ligase RNF168. Moreover, we show that SET8-induced BRCA1 inhibition is not necessarily related to the loss of BARD1 binding to unmethylated histone H4K20. Instead, it is largely caused by the accumulation of 53BP1 in a manner depending on the concerted activities of SET8 and RNF168 on chromatin. Conversely, the lack of SET8 and H4K20 mono-methylation on newly assembly chromatin after DNA replication led to the untimely accumulation of BRCA1 on chromatin at the subsequent G1 phase. Altogether, these results establish the <i>de novo</i> activity of SET8 on chromatin as a primordial epigenetic lock of the BRCA1-mediated HR pathway during the cell cycle.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"1-23"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-cycle dependent inhibition of BRCA1 signaling by the lysine methyltransferase SET8.\",\"authors\":\"Yannick Perez, Fatima Alhourani, Julie Patouillard, Cyril Ribeyre, Marion Larroque, Véronique Baldin, David Lleres, Charlotte Grimaud, Eric Julien\",\"doi\":\"10.1080/15384101.2025.2508114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell-cycle regulated methyltransferase SET8 is the sole enzyme responsible for the mono-methylation of histone H4 at lysine 20 (H4K20) that is the substrate for di- and trimethylation mainly by SUV4-20Hs enzymes. Both SET8 and SUV4-20Hs have been implicated in regulating DNA repair pathway choice through the inverse affinities of BRCA1-BARD1 and 53BP1 complexes for disparate methylation states of H4K20. However, the precise and respective functions of each H4K20 methyltransferase in DNA repair pathways remain to be clarified. Here, we show that SET8 acts as a potent chromatin inhibitor of homologous recombination and that its timely degradation during DNA replication is essential for the spontaneous nuclear focal accumulation of BRCA1 and RAD51 complexes during the S phase. Strikingly, the anti-recombinogenic function of SET8 is independent of SUV4-20H activity but requires the subsequent recruitment of the ubiquitin ligase RNF168. Moreover, we show that SET8-induced BRCA1 inhibition is not necessarily related to the loss of BARD1 binding to unmethylated histone H4K20. Instead, it is largely caused by the accumulation of 53BP1 in a manner depending on the concerted activities of SET8 and RNF168 on chromatin. Conversely, the lack of SET8 and H4K20 mono-methylation on newly assembly chromatin after DNA replication led to the untimely accumulation of BRCA1 on chromatin at the subsequent G1 phase. Altogether, these results establish the <i>de novo</i> activity of SET8 on chromatin as a primordial epigenetic lock of the BRCA1-mediated HR pathway during the cell cycle.</p>\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2025.2508114\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2025.2508114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞周期调节的甲基转移酶SET8是负责组蛋白H4在赖氨酸20 (H4K20)上的单甲基化的唯一酶,赖氨酸20是主要由SUV4-20Hs酶进行二甲基化和三甲基化的底物。SET8和SUV4-20Hs都涉及通过BRCA1-BARD1和53BP1复合物对不同H4K20甲基化状态的反向亲和性来调节DNA修复途径的选择。然而,每种H4K20甲基转移酶在DNA修复途径中的精确和各自的功能仍有待阐明。在这里,我们发现SET8是同源重组的一种有效的染色质抑制剂,并且在DNA复制过程中,它的及时降解对于BRCA1和RAD51复合物在S期的自发核局灶积累至关重要。引人注目的是,SET8的抗重组功能与SUV4-20 h活性无关,但需要随后募集泛素连接酶RNF168。此外,我们发现set8诱导的BRCA1抑制并不一定与BARD1与未甲基化组蛋白H4K20结合的缺失有关。相反,它主要是由53BP1的积累引起的,其方式取决于SET8和RNF168在染色质上的协同活动。相反,DNA复制后新组装染色质上缺乏SET8和H4K20单甲基化,导致在随后的G1期染色质上过早积累BRCA1。总之,这些结果确定了SET8在染色质上的新生活性是brca1介导的HR通路在细胞过程中的原始表观遗传锁定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell-cycle dependent inhibition of BRCA1 signaling by the lysine methyltransferase SET8.

The cell-cycle regulated methyltransferase SET8 is the sole enzyme responsible for the mono-methylation of histone H4 at lysine 20 (H4K20) that is the substrate for di- and trimethylation mainly by SUV4-20Hs enzymes. Both SET8 and SUV4-20Hs have been implicated in regulating DNA repair pathway choice through the inverse affinities of BRCA1-BARD1 and 53BP1 complexes for disparate methylation states of H4K20. However, the precise and respective functions of each H4K20 methyltransferase in DNA repair pathways remain to be clarified. Here, we show that SET8 acts as a potent chromatin inhibitor of homologous recombination and that its timely degradation during DNA replication is essential for the spontaneous nuclear focal accumulation of BRCA1 and RAD51 complexes during the S phase. Strikingly, the anti-recombinogenic function of SET8 is independent of SUV4-20H activity but requires the subsequent recruitment of the ubiquitin ligase RNF168. Moreover, we show that SET8-induced BRCA1 inhibition is not necessarily related to the loss of BARD1 binding to unmethylated histone H4K20. Instead, it is largely caused by the accumulation of 53BP1 in a manner depending on the concerted activities of SET8 and RNF168 on chromatin. Conversely, the lack of SET8 and H4K20 mono-methylation on newly assembly chromatin after DNA replication led to the untimely accumulation of BRCA1 on chromatin at the subsequent G1 phase. Altogether, these results establish the de novo activity of SET8 on chromatin as a primordial epigenetic lock of the BRCA1-mediated HR pathway during the cell cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信