{"title":"琥珀酸盐降低人脂肪干细胞的生物活性和线粒体功能。","authors":"Bo Wang, Xinxin Wang, Meijin Guo, Huiming Xu","doi":"10.1080/15384101.2025.2508109","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated succinate accumulation has been demonstrated to be associated with metabolic and inflammatory disorders. Our previous study revealed that adipose-derived stem cells (ADSC) from obese individuals exhibit high succinate, reduced biological activity, and mitochondrial dysfunction. However, the precise role of succinate in these processes remains unclear. Here, we investigated the effects of excess succinate on cellular biological activity, immunomodulatory capacity, and mitochondrial function of ADSC. We found that elevated succinate levels in ADSC decreased proliferation and differentiation potential, while promoting M1 macrophage polarization. Furthermore, succinate accumulation impaired mitochondrial biogenesis and metabolism, increasing in reactive oxygen species (ROS) production and inflammatory responses. Transcriptome sequencing analysis further confirmed that succinate upregulated inflammatory pathways, suppressed mitochondrial biogenesis and metabolism, and enhanced cellular apoptosis and senescence, accompanied by reduced DNA replication and repair. Overall, these findings imply that succinate accumulation in ADSC triggers inflammatory response and mitochondrial dysfunction, potentially contributing to a decline of cellular biological activity. Targeting succinate may offer therapeutic potential for metabolic disorders.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinate reduces biological activity and mitochondrial function of human adipose-derived stem cells.\",\"authors\":\"Bo Wang, Xinxin Wang, Meijin Guo, Huiming Xu\",\"doi\":\"10.1080/15384101.2025.2508109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated succinate accumulation has been demonstrated to be associated with metabolic and inflammatory disorders. Our previous study revealed that adipose-derived stem cells (ADSC) from obese individuals exhibit high succinate, reduced biological activity, and mitochondrial dysfunction. However, the precise role of succinate in these processes remains unclear. Here, we investigated the effects of excess succinate on cellular biological activity, immunomodulatory capacity, and mitochondrial function of ADSC. We found that elevated succinate levels in ADSC decreased proliferation and differentiation potential, while promoting M1 macrophage polarization. Furthermore, succinate accumulation impaired mitochondrial biogenesis and metabolism, increasing in reactive oxygen species (ROS) production and inflammatory responses. Transcriptome sequencing analysis further confirmed that succinate upregulated inflammatory pathways, suppressed mitochondrial biogenesis and metabolism, and enhanced cellular apoptosis and senescence, accompanied by reduced DNA replication and repair. Overall, these findings imply that succinate accumulation in ADSC triggers inflammatory response and mitochondrial dysfunction, potentially contributing to a decline of cellular biological activity. Targeting succinate may offer therapeutic potential for metabolic disorders.</p>\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2025.2508109\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2025.2508109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Succinate reduces biological activity and mitochondrial function of human adipose-derived stem cells.
Elevated succinate accumulation has been demonstrated to be associated with metabolic and inflammatory disorders. Our previous study revealed that adipose-derived stem cells (ADSC) from obese individuals exhibit high succinate, reduced biological activity, and mitochondrial dysfunction. However, the precise role of succinate in these processes remains unclear. Here, we investigated the effects of excess succinate on cellular biological activity, immunomodulatory capacity, and mitochondrial function of ADSC. We found that elevated succinate levels in ADSC decreased proliferation and differentiation potential, while promoting M1 macrophage polarization. Furthermore, succinate accumulation impaired mitochondrial biogenesis and metabolism, increasing in reactive oxygen species (ROS) production and inflammatory responses. Transcriptome sequencing analysis further confirmed that succinate upregulated inflammatory pathways, suppressed mitochondrial biogenesis and metabolism, and enhanced cellular apoptosis and senescence, accompanied by reduced DNA replication and repair. Overall, these findings imply that succinate accumulation in ADSC triggers inflammatory response and mitochondrial dysfunction, potentially contributing to a decline of cellular biological activity. Targeting succinate may offer therapeutic potential for metabolic disorders.
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.