Koya Obara, Kyoko Baba, Kyoumi Shirai, Yuko Hamada, Nobuko Arakawa, Ayami Hasegawa, Nanako Takaoka, Ryoichi Aki, Robert M Hoffman
{"title":"Hair-follicle-associated pluripotent (HAP) stem-cell-sheet implantation accelerates cutaneous wound closure and suppresses scar formation in a mouse model.","authors":"Koya Obara, Kyoko Baba, Kyoumi Shirai, Yuko Hamada, Nobuko Arakawa, Ayami Hasegawa, Nanako Takaoka, Ryoichi Aki, Robert M Hoffman","doi":"10.1080/15384101.2025.2508112","DOIUrl":null,"url":null,"abstract":"<p><p>Patients frequently experience physical, mental, and even financial distress because of acute or chronic skin wounds. In severe situations, scarring on the skin can be quite noticeable, cause persistent discomfort, restrict joint motion, or be mentally taxing. Hair-follicle-associated pluripotent (HAP) stem cells were discovered by our laboratory, in the bulge area of the hair follicle and can differentiate to neurons, glia, beating cardiomyocytes, keratinocytes and nascent vessels. In the present study, HAP stem cell sheets were formed by culturing the upper part of hair follicles and implanting into mice with skin ulcers. The HAP stem cell sheets contained keratinocytes, endothelial cells and neurons. Autologous HAP stem cell sheet implantation to the dorsal wound in C57BL/6J mice significantly accelerated wound closure compared with non-implanted control mice. HAP-stem-cell sheets expressing green fluorescent protein (GFP) implanted into nude mice differentiated into keratinocytes in the epidermis, and neurons and endothelial cells in the dermis. The thicknesses of the epidermis and dermis and M2 macrophage and myofibroblast infiltration into the wound were significantly decreased in HAP-stem cell-implanted mice compared with non-implanted control mice. Expression levels of TGF-β1, COL1A2 and COL3A1 mRNA in the wound were significantly decreased in HAP stem cell-implanted mice compared with non-implanted control mice. These results suggest that implanting HAP stem cell sheets accelerates cutaneous wound closure and suppresses scar formation. The HAP stem cells used in the present study thus have potential as a future clinical strategy for accelerating wound healing.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"1-14"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2025.2508112","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients frequently experience physical, mental, and even financial distress because of acute or chronic skin wounds. In severe situations, scarring on the skin can be quite noticeable, cause persistent discomfort, restrict joint motion, or be mentally taxing. Hair-follicle-associated pluripotent (HAP) stem cells were discovered by our laboratory, in the bulge area of the hair follicle and can differentiate to neurons, glia, beating cardiomyocytes, keratinocytes and nascent vessels. In the present study, HAP stem cell sheets were formed by culturing the upper part of hair follicles and implanting into mice with skin ulcers. The HAP stem cell sheets contained keratinocytes, endothelial cells and neurons. Autologous HAP stem cell sheet implantation to the dorsal wound in C57BL/6J mice significantly accelerated wound closure compared with non-implanted control mice. HAP-stem-cell sheets expressing green fluorescent protein (GFP) implanted into nude mice differentiated into keratinocytes in the epidermis, and neurons and endothelial cells in the dermis. The thicknesses of the epidermis and dermis and M2 macrophage and myofibroblast infiltration into the wound were significantly decreased in HAP-stem cell-implanted mice compared with non-implanted control mice. Expression levels of TGF-β1, COL1A2 and COL3A1 mRNA in the wound were significantly decreased in HAP stem cell-implanted mice compared with non-implanted control mice. These results suggest that implanting HAP stem cell sheets accelerates cutaneous wound closure and suppresses scar formation. The HAP stem cells used in the present study thus have potential as a future clinical strategy for accelerating wound healing.
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.