François Alouges, Antonin Chambolle, Dominik Stantejsky
{"title":"Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field","authors":"François Alouges, Antonin Chambolle, Dominik Stantejsky","doi":"10.1007/s00526-024-02717-5","DOIUrl":"https://doi.org/10.1007/s00526-024-02717-5","url":null,"abstract":"<p>We use the Landau-de Gennes energy to describe a particle immersed into nematic liquid crystals with a constant applied magnetic field. We derive a limit energy in a regime where both line and point defects are present, showing quantitatively that the close-to-minimal energy is asymptotically concentrated on lines and surfaces nearby or on the particle. We also discuss regularity of minimizers and optimality conditions for the limit energy.\u0000</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"27 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a theorem by Schlenk","authors":"Yannis Bähni","doi":"10.1007/s00526-024-02738-0","DOIUrl":"https://doi.org/10.1007/s00526-024-02738-0","url":null,"abstract":"<p>In this paper we prove a generalisation of Schlenk’s theorem about the existence of contractible periodic Reeb orbits on stable, displaceable hypersurfaces in symplectically aspherical, geometrically bounded, symplectic manifolds, to a forcing result for contractible twisted periodic Reeb orbits. We make use of holomorphic curve techniques for a suitable generalisation of the Rabinowitz action functional in the stable case in order to prove the forcing result. As in Schlenk’s theorem, we derive a lower bound for the displacement energy of the displaceable hypersurface in terms of the action value of such periodic orbits. The main application is a forcing result for noncontractible periodic Reeb orbits on quotients of certain symmetric star-shaped hypersurfaces. In this case, the lower bound for the displacement energy is explicitly given by the difference of the two periods. This theorem can be applied to many physical systems including the Hénon–Heiles Hamiltonian and Stark–Zeeman systems. Further applications include a new proof of the well-known fact that the displacement energy is a relative symplectic capacity on <span>({mathbb {R}}^{2n})</span> and that the Hofer metric is indeed a metric.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"17 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and decays of solutions for fractional Schrödinger equations with general potentials","authors":"Yinbin Deng, Shuangjie Peng, Xian Yang","doi":"10.1007/s00526-024-02728-2","DOIUrl":"https://doi.org/10.1007/s00526-024-02728-2","url":null,"abstract":"<p>We revisit the following fractional Schrödinger equation </p><span>$$begin{aligned} varepsilon ^{2s}(-Delta )^su +Vu=u^{p-1},,,,u>0, textrm{in} {mathbb {R}}^N, end{aligned}$$</span>(0.1)<p>where <span>(varepsilon >0)</span> is a small parameter, <span>((-Delta )^s)</span> denotes the fractional Laplacian, <span>(sin (0,1))</span>, <span>(pin (2, 2_s^*))</span>, <span>(2_s^*=frac{2N}{N-2s})</span>, <span>(N>2s)</span>, <span>(Vin Cbig ({mathbb {R}}^N, [0, +infty )big ))</span> is a general potential. Under various assumptions on <i>V</i>(<i>x</i>) at infinity, including <i>V</i>(<i>x</i>) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value <span>(p_*)</span>, such that the above problem admits positive concentration solutions if <span>(pin (p_*, ,2_s^*))</span>, while it has no positive weak solutions for <span>(pin (2,,p_*))</span> if <span>(p_*>2)</span>, where the threshold <span>(p_*in [2, 2^*_s))</span> can be characterized explicitly by</p><span>$$begin{aligned} p_*=left{ begin{array}{ll} 2+frac{2s}{N-2s} &{}quad text{ if } lim limits _{|x| rightarrow infty } (1+|x|^{2s})V(x)=0, 2+frac{omega }{N+2s-omega } &{}quad text{ if } 0!<!inf (1!+!|x|^omega )V(x)!le ! sup (1!+!|x|^omega )V(x)!<! infty text{ for } text{ some } omega !in ! [0, 2s], 2&{}quad text{ if } inf V(x)log (e+|x|^2)>0. end{array}right. end{aligned}$$</span><p>Moreover, corresponding to the various decay assumptions of <i>V</i>(<i>x</i>), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"78 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rigidity and quantitative stability for partially overdetermined problems and capillary CMC hypersurfaces","authors":"Xiaohan Jia, Zheng Lu, Chao Xia, Xuwen Zhang","doi":"10.1007/s00526-024-02733-5","DOIUrl":"https://doi.org/10.1007/s00526-024-02733-5","url":null,"abstract":"<p>In this paper, we first prove a rigidity result for a Serrin-type partially overdetermined problem in the half-space, which gives a characterization of capillary spherical caps by the overdetermined problem. In the second part, we prove quantitative stability results for the Serrin-type partially overdetermined problem, as well as capillary almost constant mean curvature hypersurfaces in the half-space.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"19 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An exceptional property of the one-dimensional Bianchi–Egnell inequality","authors":"Tobias König","doi":"10.1007/s00526-024-02732-6","DOIUrl":"https://doi.org/10.1007/s00526-024-02732-6","url":null,"abstract":"<p>In this paper, for <span>(d ge 1)</span> and <span>(s in (0,frac{d}{2}))</span>, we study the Bianchi–Egnell quotient </p><span>$$begin{aligned} {mathcal {Q}}(f) = inf _{f in dot{H}^s({mathbb {R}}^d) setminus {mathcal {B}}} frac{Vert (-Delta )^{s/2} fVert _{L^2({mathbb {R}}^d)}^2 - S_{d,s} Vert fVert _{L^{frac{2d}{d-2s}}(mathbb R^d)}^2}{text {dist}_{dot{H}^s({mathbb {R}}^d)}(f, {mathcal {B}})^2}, qquad f in dot{H}^s({mathbb {R}}^d) setminus {mathcal {B}}, end{aligned}$$</span><p>where <span>(S_{d,s})</span> is the best Sobolev constant and <span>({mathcal {B}})</span> is the manifold of Sobolev optimizers. By a fine asymptotic analysis, we prove that when <span>(d = 1)</span>, there is a neighborhood of <span>({mathcal {B}})</span> on which the quotient <span>({mathcal {Q}}(f))</span> is larger than the lowest value attainable by sequences converging to <span>({mathcal {B}})</span>. This behavior is surprising because it is contrary to the situation in dimension <span>(d ge 2)</span> described recently in König (Bull Lond Math Soc 55(4):2070–2075, 2023). This leads us to conjecture that for <span>(d = 1)</span>, <span>({mathcal {Q}}(f))</span> has no minimizer on <span>(dot{H}^s({mathbb {R}}^d) setminus {mathcal {B}})</span>, which again would be contrary to the situation in <span>(d ge 2)</span>. As a complement of the above, we study a family of test functions which interpolates between one and two Talenti bubbles, for every <span>(d ge 1)</span>. For <span>(d ge 2)</span>, this family yields an alternative proof of the main result of König (Bull Lond Math Soc 55(4):2070–2075, 2023). For <span>(d =1)</span> we make some numerical observations which support the conjecture stated above.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"5 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Esposito, R. S. Gvalani, A. Schlichting, M. Schmidtchen
{"title":"On a novel gradient flow structure for the aggregation equation","authors":"A. Esposito, R. S. Gvalani, A. Schlichting, M. Schmidtchen","doi":"10.1007/s00526-024-02692-x","DOIUrl":"https://doi.org/10.1007/s00526-024-02692-x","url":null,"abstract":"<p>The aggregation equation arises naturally in kinetic theory in the study of granular media, and its interpretation as a 2-Wasserstein gradient flow for the nonlocal interaction energy is well-known. Starting from the spatially homogeneous inelastic Boltzmann equation, a formal Taylor expansion reveals a link between this equation and the aggregation equation with an appropriately chosen interaction potential. Inspired by this formal link and the fact that the associated aggregation equation also dissipates the kinetic energy, we present a novel way of interpreting the aggregation equation as a gradient flow, in the sense of curves of maximal slope, of the kinetic energy, rather than the usual interaction energy, with respect to an appropriately constructed transportation metric on the space of probability measures.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"107 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tran Quang Minh, Hong-Danh Pham, Mirelson M. Freitas
{"title":"A class of fourth-order dispersive wave equations with exponential source","authors":"Tran Quang Minh, Hong-Danh Pham, Mirelson M. Freitas","doi":"10.1007/s00526-024-02731-7","DOIUrl":"https://doi.org/10.1007/s00526-024-02731-7","url":null,"abstract":"<p>This paper is concerned with a class of fourth-order dispersive wave equations with <i>exponential</i> source term. Firstly, by applying the contraction mapping principle, we establish the local existence and uniqueness of the solution. In the spirit of the variational principle and mountain pass theorem, a natural phase space is precisely divided into three different energy levels. Then we introduce a family of potential wells to derive a threshold of the existence of global solutions and blow up in finite time of solution in both cases with sub-critical and critical initial energy. These results can be used to extend the previous result obtained by Alves and Cavalcanti (Calc. Var. Partial Differ. Equ. 34 (2009) 377–411). Moreover, an explicit sufficient condition for initial data leading to blow up result is established at an arbitrarily positive initial energy level.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"54 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Traveling waves and effective mass for the regularized Landau-Pekar equations","authors":"Simone Rademacher","doi":"10.1007/s00526-024-02735-3","DOIUrl":"https://doi.org/10.1007/s00526-024-02735-3","url":null,"abstract":"<p>We consider the regularized Landau-Pekar equations with positive speed of sound and prove the existence of subsonic traveling waves. We provide a definition of the effective mass for the regularized Landau-Pekar equations based on the energy-velocity expansion of subsonic traveling waves. Moreover we show that this definition of the effective mass agrees with the definition based on an energy-momentum expansion of low energy states.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"40 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations","authors":"Zihao Song","doi":"10.1007/s00526-024-02723-7","DOIUrl":"https://doi.org/10.1007/s00526-024-02723-7","url":null,"abstract":"<p>In this paper, we study the Navier–Stokes–Korteweg equations governed by the evolution of compressible fluids with capillarity effects. We first investigate the global well-posedness of solution in the critical Besov space for large initial data. Contrary to pure parabolic methods in Charve et al. (Indiana Univ Math J 70:1903–1944, 2021), we also take the strong dispersion due to large capillarity coefficient <span>(kappa )</span> into considerations. By establishing a dissipative–dispersive estimate, we are able to obtain uniform estimates and incompressible limits in terms of <span>(kappa )</span> simultaneously. Secondly, we establish the large time behaviors of the solution. We would make full use of both parabolic mechanics and dispersive structure which implicates our decay results without limitations for upper bound of derivatives while requiring no smallness for initial assumption.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"27 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation","authors":"Hua Chen, Xin Liao, Ming Zhang","doi":"10.1007/s00526-024-02708-6","DOIUrl":"https://doi.org/10.1007/s00526-024-02708-6","url":null,"abstract":"<p>In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e. </p><span>$$begin{aligned} Big {begin{array}{l} -(Delta _{x} u+(alpha +1)^2|x|^{2 alpha } Delta _{y} u)=u^{frac{Q+2}{Q-2}} + lambda ulog u^2, u=0~~ text { on } partial Omega , end{array} end{aligned}$$</span>(0.2)<p>where <span>((x,y)in Omega subset mathbb {R}^N = mathbb {R}^m times mathbb {R}^n)</span> with <span>(m ge 1)</span>, <span>(nge 0)</span>, <span>(Omega cap {x=0}ne emptyset )</span> is a bounded domain, the parameter <span>(alpha ge 0)</span> and <span>( Q=m+ n(alpha +1))</span> denotes the “homogeneous dimension” of <span>(mathbb {R}^N)</span>. When <span>(lambda =0)</span>, we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for <span>(lambda in mathbb {R}backslash {0})</span>, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.\u0000</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"113 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}