An exceptional property of the one-dimensional Bianchi–Egnell inequality

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tobias König
{"title":"An exceptional property of the one-dimensional Bianchi–Egnell inequality","authors":"Tobias König","doi":"10.1007/s00526-024-02732-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, for <span>\\(d \\ge 1\\)</span> and <span>\\(s \\in (0,\\frac{d}{2})\\)</span>, we study the Bianchi–Egnell quotient </p><span>$$\\begin{aligned} {\\mathcal {Q}}(f) = \\inf _{f \\in \\dot{H}^s({\\mathbb {R}}^d) \\setminus {\\mathcal {B}}} \\frac{\\Vert (-\\Delta )^{s/2} f\\Vert _{L^2({\\mathbb {R}}^d)}^2 - S_{d,s} \\Vert f\\Vert _{L^{\\frac{2d}{d-2s}}(\\mathbb R^d)}^2}{\\text {dist}_{\\dot{H}^s({\\mathbb {R}}^d)}(f, {\\mathcal {B}})^2}, \\qquad f \\in \\dot{H}^s({\\mathbb {R}}^d) \\setminus {\\mathcal {B}}, \\end{aligned}$$</span><p>where <span>\\(S_{d,s}\\)</span> is the best Sobolev constant and <span>\\({\\mathcal {B}}\\)</span> is the manifold of Sobolev optimizers. By a fine asymptotic analysis, we prove that when <span>\\(d = 1\\)</span>, there is a neighborhood of <span>\\({\\mathcal {B}}\\)</span> on which the quotient <span>\\({\\mathcal {Q}}(f)\\)</span> is larger than the lowest value attainable by sequences converging to <span>\\({\\mathcal {B}}\\)</span>. This behavior is surprising because it is contrary to the situation in dimension <span>\\(d \\ge 2\\)</span> described recently in König (Bull Lond Math Soc 55(4):2070–2075, 2023). This leads us to conjecture that for <span>\\(d = 1\\)</span>, <span>\\({\\mathcal {Q}}(f)\\)</span> has no minimizer on <span>\\(\\dot{H}^s({\\mathbb {R}}^d) \\setminus {\\mathcal {B}}\\)</span>, which again would be contrary to the situation in <span>\\(d \\ge 2\\)</span>. As a complement of the above, we study a family of test functions which interpolates between one and two Talenti bubbles, for every <span>\\(d \\ge 1\\)</span>. For <span>\\(d \\ge 2\\)</span>, this family yields an alternative proof of the main result of König (Bull Lond Math Soc 55(4):2070–2075, 2023). For <span>\\(d =1\\)</span> we make some numerical observations which support the conjecture stated above.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02732-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, for \(d \ge 1\) and \(s \in (0,\frac{d}{2})\), we study the Bianchi–Egnell quotient

$$\begin{aligned} {\mathcal {Q}}(f) = \inf _{f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}} \frac{\Vert (-\Delta )^{s/2} f\Vert _{L^2({\mathbb {R}}^d)}^2 - S_{d,s} \Vert f\Vert _{L^{\frac{2d}{d-2s}}(\mathbb R^d)}^2}{\text {dist}_{\dot{H}^s({\mathbb {R}}^d)}(f, {\mathcal {B}})^2}, \qquad f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}, \end{aligned}$$

where \(S_{d,s}\) is the best Sobolev constant and \({\mathcal {B}}\) is the manifold of Sobolev optimizers. By a fine asymptotic analysis, we prove that when \(d = 1\), there is a neighborhood of \({\mathcal {B}}\) on which the quotient \({\mathcal {Q}}(f)\) is larger than the lowest value attainable by sequences converging to \({\mathcal {B}}\). This behavior is surprising because it is contrary to the situation in dimension \(d \ge 2\) described recently in König (Bull Lond Math Soc 55(4):2070–2075, 2023). This leads us to conjecture that for \(d = 1\), \({\mathcal {Q}}(f)\) has no minimizer on \(\dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}\), which again would be contrary to the situation in \(d \ge 2\). As a complement of the above, we study a family of test functions which interpolates between one and two Talenti bubbles, for every \(d \ge 1\). For \(d \ge 2\), this family yields an alternative proof of the main result of König (Bull Lond Math Soc 55(4):2070–2075, 2023). For \(d =1\) we make some numerical observations which support the conjecture stated above.

一维比安奇-埃格奈尔不等式的一个特殊性质
在本文中,对于 d 和 s,我们研究了 Bianchi-Egnell 商 $$begin{aligned} {\mathcal {Q}}(f) = \inf _{f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}} 。\f\Vert _{L^2({\mathbb {R}}^d)}^2 - S_{d,s}\f\Vert _{L^{frac{2d}{d-2s}}(\mathbb R^d)}^2}{text {dist}_{\dot{H}^s({\mathbb {R}}^d)}(f, {\mathcal {B}})^2}, \qquad f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}、\end{aligned}$ 其中 \(S_{d,s}\) 是最佳索波列夫常数, \({\mathcal {B}}\) 是索波列夫优化器流形。通过精细的渐近分析,我们证明了当\(d = 1\) 时,存在一个\({\mathcal {B}}\)的邻域,在这个邻域上的商\({\mathcal {Q}}(f)\) 大于收敛到\({\mathcal {B}}\)的序列所能达到的最低值。这种行为令人惊讶,因为它与柯尼希(Bull Lond Math Soc 55(4):2070-2075, 2023)最近描述的维数(d \ge 2\ )中的情况相反。这让我们猜想,对于 \(d = 1\), \({\mathcal {Q}}(f)\) 在 \(\dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}\)上没有最小值,这也与\(d\ge 2\) 的情况相反。作为上述结论的补充,我们研究了一个测试函数族,对于每一个(d),它都会在一个和两个塔伦提气泡之间进行插值。对于 \(d \ge 2\), 这个族产生了柯尼希主要结果的另一个证明(Bull Lond Math Soc 55(4):2070-2075, 2023)。对于(d =1),我们进行了一些数值观察,这些观察支持了上述猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信