{"title":"Comparison theorems on H-type sub-Riemannian manifolds.","authors":"Fabrice Baudoin, Erlend Grong, Luca Rizzi, Sylvie Vega-Molino","doi":"10.1007/s00526-025-02992-w","DOIUrl":"https://doi.org/10.1007/s00526-025-02992-w","url":null,"abstract":"<p><p>On H-type sub-Riemannian manifolds we establish sub-Hessian and sub-Laplacian comparison theorems which are uniform for a family of approximating Riemannian metrics converging to the sub-Riemannian one. We also prove a sharp sub-Riemannian Bonnet-Myers theorem that extends to this general setting results previously proved on contact and quaternionic contact manifolds.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"143"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuity up to the boundary for minimizers of the one-phase Bernoulli problem.","authors":"Xavier Fernández-Real, Florian Gruen","doi":"10.1007/s00526-025-03040-3","DOIUrl":"10.1007/s00526-025-03040-3","url":null,"abstract":"<p><p>We prove new boundary regularity results for minimizers to the one-phase Alt-Caffarelli functional (also known as Bernoulli free boundary problem) in the case of continuous and Hölder-continuous boundary data. As an application, we use them to extend recent generic uniqueness and regularity results to families of continuous functions.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"166"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144180638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Globally stable blowup profile for supercritical wave maps in all dimensions.","authors":"Irfan Glogić","doi":"10.1007/s00526-024-02901-7","DOIUrl":"https://doi.org/10.1007/s00526-024-02901-7","url":null,"abstract":"<p><p>We consider wave maps from the <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>d</mi> <mo>)</mo></mrow> </math> -dimensional Minkowski space into the <i>d</i>-sphere. It is known from the work of Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) that in the energy-supercritical case, i.e., for <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , this model admits a closed-form corotational self-similar blowup solution. We show that this blowup profile is globally nonlinearly stable for all <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , thereby verifying a perturbative version of the conjecture posed in Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) about the generic large data blowup behavior for this model. To accomplish this, we develop a novel stability analysis approach based on similarity variables posed on the whole space <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> . As a result, we draw a general road map for studying spatially global stability of self-similar blowup profiles for nonlinear wave equations in the radial case for arbitrary dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> .</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 2","pages":"46"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The nonlinear fast diffusion equation on smooth metric measure spaces: Hamilton-Souplet-Zhang estimates and a Ricci-Perelman super flow.","authors":"Ali Taheri, Vahideh Vahidifar","doi":"10.1007/s00526-025-02938-2","DOIUrl":"https://doi.org/10.1007/s00526-025-02938-2","url":null,"abstract":"<p><p>This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the <i>f</i>-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery <i>m</i>-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 3","pages":"81"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143977555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant valuations on convex functions.","authors":"Georg C Hofstätter, Jonas Knoerr","doi":"10.1007/s00526-025-03117-z","DOIUrl":"10.1007/s00526-025-03117-z","url":null,"abstract":"<p><p>We classify all continuous valuations on the space of finite convex functions with values in the same space which are dually epi-translation-invariant and equi- resp. contravariant with respect to volume-preserving linear maps. We thereby identify the valuation-theoretic functional analogues of the difference body map and show that there does not exist a generalization of the projection body map in this setting. This non-existence result is shown to also hold true for valuations with values in the space of convex functions that are finite in a neighborhood of the origin.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 8","pages":"242"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145039184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffuse interface model for two-phase flows on evolving surfaces with different densities: global well-posedness.","authors":"Helmut Abels, Harald Garcke, Andrea Poiatti","doi":"10.1007/s00526-025-03001-w","DOIUrl":"10.1007/s00526-025-03001-w","url":null,"abstract":"<p><p>We show global in time existence and uniqueness on any finite time interval of strong solutions to a Navier-Stokes/Cahn-Hilliard type system on a given two-dimensional evolving surface in the case of different densities and a singular (logarithmic) potential. The system describes a diffuse interface model for a two-phase flow of viscous incompressible fluids on an evolving surface. We also establish the validity of the instantaneous strict separation property from the pure phases. To show these results we use our previous achievements on local well-posedness together with suitable novel regularity results for the convective Cahn-Hilliard equation. The latter allows to obtain higher-order energy estimates to extend the local solution globally in time. To this aim the time evolution of energy type quantities has to be calculated and estimated carefully.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"141"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143978988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:mi>Γ</ns0:mi></ns0:math> -Limsup estimate for a nonlocal approximation of the Willmore functional.","authors":"Hardy Chan, Mattia Freguglia, Marco Inversi","doi":"10.1007/s00526-025-03039-w","DOIUrl":"https://doi.org/10.1007/s00526-025-03039-w","url":null,"abstract":"<p><p>We propose a possible nonlocal approximation of the Willmore functional, in the sense of Gamma-convergence, based on the first variation of the fractional Allen-Cahn energies, and we prove the corresponding <math><mi>Γ</mi></math> -limsup estimate. Our analysis is based on the expansion of the fractional Laplacian in Fermi coordinates and fine estimates on the decay of higher order derivatives of the one-dimensional nonlocal optimal profile. This result is the nonlocal counterpart of that obtained by Bellettini and Paolini, where they proposed a phase-field approximation of the Willmore functional based on the first variation of the (local) Allen-Cahn energies.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 6","pages":"181"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144198267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Enciso, Wadim Gerner, Daniel Peralta-Salas
{"title":"Optimal metrics for the first curl eigenvalue on 3-manifolds.","authors":"Alberto Enciso, Wadim Gerner, Daniel Peralta-Salas","doi":"10.1007/s00526-025-02995-7","DOIUrl":"https://doi.org/10.1007/s00526-025-02995-7","url":null,"abstract":"<p><p>In this article we analyze the spectral properties of the curl operator on closed Riemannian 3-manifolds. Specifically, we study metrics that are optimal in the sense that they minimize the first curl eigenvalue among any other metric of the same volume in the same conformal class. We establish a connection between optimal metrics and the existence of minimizers for the <math><msup><mi>L</mi> <mfrac><mn>3</mn> <mn>2</mn></mfrac> </msup> </math> -norm in a fixed helicity class, which is exploited to obtain necessary and sufficient conditions for a metric to be locally optimal. As a consequence, our main result is that we prove that <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> and <math><mrow><mi>R</mi> <msup><mrow><mi>P</mi></mrow> <mn>3</mn></msup> </mrow> </math> endowed with the round metric are <math><msup><mi>C</mi> <mn>1</mn></msup> </math> -local minimizers for the first curl eigenvalue (in its conformal and volume class). The connection between the curl operator and the Hodge Laplacian allows us to infer that the canonical metrics of <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> and <math><mrow><mi>R</mi> <msup><mrow><mi>P</mi></mrow> <mn>3</mn></msup> </mrow> </math> are locally optimal for the first eigenvalue of the Hodge Laplacian on coexact 1-forms. This is in strong contrast to what happens in four dimensions.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"146"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143981510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability analysis of the incompressible porous media equation and the Stokes transport system via energy structure.","authors":"Jaemin Park","doi":"10.1007/s00526-025-03029-y","DOIUrl":"https://doi.org/10.1007/s00526-025-03029-y","url":null,"abstract":"<p><p>In this paper, we revisit asymptotic stability for the two-dimensional incompressible porous media equation and the Stokes transport system in a periodic channel. It is well-known that a stratified density, which strictly decreases in the vertical direction, is asymptotically stable under sufficiently small and smooth perturbations. We provide improvements in the regularity assumptions on the perturbation and in the convergence rate. Unlike the standard approach for stability analysis relying on linearized equations, we directly address the nonlinear problem by exploiting the energy structure of each system. While it is widely known that the potential energy is a Lyapunov functional in both systems, our key observation is that the second derivative of the potential energy reveals a (degenerate) coercive structure, which arises from the fact that the solution converges to the minimizer of the energy.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"169"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144198266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Runge approximation for nonlocal wave equations and unique determination of polyhomogeneous nonlinearities.","authors":"Yi-Hsuan Lin, Teemu Tyni, Philipp Zimmermann","doi":"10.1007/s00526-025-03124-0","DOIUrl":"10.1007/s00526-025-03124-0","url":null,"abstract":"<p><p>The main purpose of this article is to establish the Runge-type approximation in <math> <mrow><msup><mi>L</mi> <mn>2</mn></msup> <mrow><mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo>;</mo> <msup><mover><mi>H</mi> <mo>~</mo></mover> <mi>s</mi></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> for solutions of linear nonlocal wave equations. To achieve this, we extend the theory of very weak solutions for classical wave equations to our nonlocal framework. This strengthened Runge approximation property allows us to extend the existing uniqueness results for Calderón problems of linear and nonlinear nonlocal wave equations in our earlier works. Furthermore, we prove unique determination results for the Calderón problem of nonlocal wave equations with polyhomogeneous nonlinearities.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 9","pages":"280"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145279017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}