光滑度量空间上的非线性快速扩散方程:Hamilton-Souplet-Zhang估计和Ricci-Perelman超流。

IF 2.1 2区 数学 Q1 MATHEMATICS
Ali Taheri, Vahideh Vahidifar
{"title":"光滑度量空间上的非线性快速扩散方程:Hamilton-Souplet-Zhang估计和Ricci-Perelman超流。","authors":"Ali Taheri, Vahideh Vahidifar","doi":"10.1007/s00526-025-02938-2","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the <i>f</i>-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery <i>m</i>-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 3","pages":"81"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976860/pdf/","citationCount":"0","resultStr":"{\"title\":\"The nonlinear fast diffusion equation on smooth metric measure spaces: Hamilton-Souplet-Zhang estimates and a Ricci-Perelman super flow.\",\"authors\":\"Ali Taheri, Vahideh Vahidifar\",\"doi\":\"10.1007/s00526-025-02938-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the <i>f</i>-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery <i>m</i>-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"64 3\",\"pages\":\"81\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-025-02938-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-025-02938-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了光滑度量空间上非线性快速扩散方程正解的梯度估计,涉及到f-拉普拉斯算子。感兴趣的梯度估计是Hamilton-Souplet-Zhang型或椭圆型,并使用不同的方法和技术建立。给出了各种含义,特别是对抛物刘维尔型结果和古代解的表征。该问题是在一般情况下考虑的,其中度规和势在涉及Bakry-Émery m-Ricci曲率张量的超流下演化。几何、非线性和进化之间奇妙的相互作用——以及它们在快速扩散的估计和最大指数范围中的复杂作用——是研究的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonlinear fast diffusion equation on smooth metric measure spaces: Hamilton-Souplet-Zhang estimates and a Ricci-Perelman super flow.

This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the f-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery m-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
4.80%
发文量
224
审稿时长
6 months
期刊介绍: Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives. This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include: - Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory - Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems - Variational problems in differential and complex geometry - Variational methods in global analysis and topology - Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems - Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions - Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信