{"title":"光滑度量空间上的非线性快速扩散方程:Hamilton-Souplet-Zhang估计和Ricci-Perelman超流。","authors":"Ali Taheri, Vahideh Vahidifar","doi":"10.1007/s00526-025-02938-2","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the <i>f</i>-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery <i>m</i>-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 3","pages":"81"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976860/pdf/","citationCount":"0","resultStr":"{\"title\":\"The nonlinear fast diffusion equation on smooth metric measure spaces: Hamilton-Souplet-Zhang estimates and a Ricci-Perelman super flow.\",\"authors\":\"Ali Taheri, Vahideh Vahidifar\",\"doi\":\"10.1007/s00526-025-02938-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the <i>f</i>-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery <i>m</i>-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"64 3\",\"pages\":\"81\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-025-02938-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-025-02938-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The nonlinear fast diffusion equation on smooth metric measure spaces: Hamilton-Souplet-Zhang estimates and a Ricci-Perelman super flow.
This article presents new gradient estimates for positive solutions to the nonlinear fast diffusion equation on smooth metric measure spaces, involving the f-Laplacian. The gradient estimates of interest are of Hamilton-Souplet-Zhang or elliptic type and are established using different methods and techniques. Various implications, notably to parabolic Liouville type results and characterisation of ancient solutions are given. The problem is considered in the general setting where the metric and potential evolve under a super flow involving the Bakry-Émery m-Ricci curvature tensor. The curious interplay between geometry, nonlinearity, and evolution - and their intricate roles in the estimates and the maximum exponent range of fast diffusion - is at the core of the investigation.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.