{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:mi>Γ</ns0:mi></ns0:math> -Limsup estimate for a nonlocal approximation of the Willmore functional.","authors":"Hardy Chan, Mattia Freguglia, Marco Inversi","doi":"10.1007/s00526-025-03039-w","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a possible nonlocal approximation of the Willmore functional, in the sense of Gamma-convergence, based on the first variation of the fractional Allen-Cahn energies, and we prove the corresponding <math><mi>Γ</mi></math> -limsup estimate. Our analysis is based on the expansion of the fractional Laplacian in Fermi coordinates and fine estimates on the decay of higher order derivatives of the one-dimensional nonlocal optimal profile. This result is the nonlocal counterpart of that obtained by Bellettini and Paolini, where they proposed a phase-field approximation of the Willmore functional based on the first variation of the (local) Allen-Cahn energies.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 6","pages":"181"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-025-03039-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a possible nonlocal approximation of the Willmore functional, in the sense of Gamma-convergence, based on the first variation of the fractional Allen-Cahn energies, and we prove the corresponding -limsup estimate. Our analysis is based on the expansion of the fractional Laplacian in Fermi coordinates and fine estimates on the decay of higher order derivatives of the one-dimensional nonlocal optimal profile. This result is the nonlocal counterpart of that obtained by Bellettini and Paolini, where they proposed a phase-field approximation of the Willmore functional based on the first variation of the (local) Allen-Cahn energies.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.