{"title":"全维超临界波图的全局稳定爆破剖面。","authors":"Irfan Glogić","doi":"10.1007/s00526-024-02901-7","DOIUrl":null,"url":null,"abstract":"<p><p>We consider wave maps from the <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>d</mi> <mo>)</mo></mrow> </math> -dimensional Minkowski space into the <i>d</i>-sphere. It is known from the work of Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) that in the energy-supercritical case, i.e., for <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , this model admits a closed-form corotational self-similar blowup solution. We show that this blowup profile is globally nonlinearly stable for all <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , thereby verifying a perturbative version of the conjecture posed in Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) about the generic large data blowup behavior for this model. To accomplish this, we develop a novel stability analysis approach based on similarity variables posed on the whole space <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> . As a result, we draw a general road map for studying spatially global stability of self-similar blowup profiles for nonlinear wave equations in the radial case for arbitrary dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> .</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 2","pages":"46"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703941/pdf/","citationCount":"0","resultStr":"{\"title\":\"Globally stable blowup profile for supercritical wave maps in all dimensions.\",\"authors\":\"Irfan Glogić\",\"doi\":\"10.1007/s00526-024-02901-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider wave maps from the <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>d</mi> <mo>)</mo></mrow> </math> -dimensional Minkowski space into the <i>d</i>-sphere. It is known from the work of Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) that in the energy-supercritical case, i.e., for <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , this model admits a closed-form corotational self-similar blowup solution. We show that this blowup profile is globally nonlinearly stable for all <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> , thereby verifying a perturbative version of the conjecture posed in Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) about the generic large data blowup behavior for this model. To accomplish this, we develop a novel stability analysis approach based on similarity variables posed on the whole space <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> . As a result, we draw a general road map for studying spatially global stability of self-similar blowup profiles for nonlinear wave equations in the radial case for arbitrary dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> .</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"64 2\",\"pages\":\"46\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02901-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02901-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Globally stable blowup profile for supercritical wave maps in all dimensions.
We consider wave maps from the -dimensional Minkowski space into the d-sphere. It is known from the work of Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) that in the energy-supercritical case, i.e., for , this model admits a closed-form corotational self-similar blowup solution. We show that this blowup profile is globally nonlinearly stable for all , thereby verifying a perturbative version of the conjecture posed in Bizoń and Biernat (Commun Math Phys 338(3): 1443-1450, 2015) about the generic large data blowup behavior for this model. To accomplish this, we develop a novel stability analysis approach based on similarity variables posed on the whole space . As a result, we draw a general road map for studying spatially global stability of self-similar blowup profiles for nonlinear wave equations in the radial case for arbitrary dimension .
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.