{"title":"不可压缩多孔介质方程及Stokes输运系统的能量结构稳定性分析。","authors":"Jaemin Park","doi":"10.1007/s00526-025-03029-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we revisit asymptotic stability for the two-dimensional incompressible porous media equation and the Stokes transport system in a periodic channel. It is well-known that a stratified density, which strictly decreases in the vertical direction, is asymptotically stable under sufficiently small and smooth perturbations. We provide improvements in the regularity assumptions on the perturbation and in the convergence rate. Unlike the standard approach for stability analysis relying on linearized equations, we directly address the nonlinear problem by exploiting the energy structure of each system. While it is widely known that the potential energy is a Lyapunov functional in both systems, our key observation is that the second derivative of the potential energy reveals a (degenerate) coercive structure, which arises from the fact that the solution converges to the minimizer of the energy.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"169"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of the incompressible porous media equation and the Stokes transport system via energy structure.\",\"authors\":\"Jaemin Park\",\"doi\":\"10.1007/s00526-025-03029-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we revisit asymptotic stability for the two-dimensional incompressible porous media equation and the Stokes transport system in a periodic channel. It is well-known that a stratified density, which strictly decreases in the vertical direction, is asymptotically stable under sufficiently small and smooth perturbations. We provide improvements in the regularity assumptions on the perturbation and in the convergence rate. Unlike the standard approach for stability analysis relying on linearized equations, we directly address the nonlinear problem by exploiting the energy structure of each system. While it is widely known that the potential energy is a Lyapunov functional in both systems, our key observation is that the second derivative of the potential energy reveals a (degenerate) coercive structure, which arises from the fact that the solution converges to the minimizer of the energy.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"64 5\",\"pages\":\"169\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-025-03029-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-025-03029-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability analysis of the incompressible porous media equation and the Stokes transport system via energy structure.
In this paper, we revisit asymptotic stability for the two-dimensional incompressible porous media equation and the Stokes transport system in a periodic channel. It is well-known that a stratified density, which strictly decreases in the vertical direction, is asymptotically stable under sufficiently small and smooth perturbations. We provide improvements in the regularity assumptions on the perturbation and in the convergence rate. Unlike the standard approach for stability analysis relying on linearized equations, we directly address the nonlinear problem by exploiting the energy structure of each system. While it is widely known that the potential energy is a Lyapunov functional in both systems, our key observation is that the second derivative of the potential energy reveals a (degenerate) coercive structure, which arises from the fact that the solution converges to the minimizer of the energy.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.