{"title":"Diffuse interface model for two-phase flows on evolving surfaces with different densities: global well-posedness.","authors":"Helmut Abels, Harald Garcke, Andrea Poiatti","doi":"10.1007/s00526-025-03001-w","DOIUrl":null,"url":null,"abstract":"<p><p>We show global in time existence and uniqueness on any finite time interval of strong solutions to a Navier-Stokes/Cahn-Hilliard type system on a given two-dimensional evolving surface in the case of different densities and a singular (logarithmic) potential. The system describes a diffuse interface model for a two-phase flow of viscous incompressible fluids on an evolving surface. We also establish the validity of the instantaneous strict separation property from the pure phases. To show these results we use our previous achievements on local well-posedness together with suitable novel regularity results for the convective Cahn-Hilliard equation. The latter allows to obtain higher-order energy estimates to extend the local solution globally in time. To this aim the time evolution of energy type quantities has to be calculated and estimated carefully.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"64 5","pages":"141"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-025-03001-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show global in time existence and uniqueness on any finite time interval of strong solutions to a Navier-Stokes/Cahn-Hilliard type system on a given two-dimensional evolving surface in the case of different densities and a singular (logarithmic) potential. The system describes a diffuse interface model for a two-phase flow of viscous incompressible fluids on an evolving surface. We also establish the validity of the instantaneous strict separation property from the pure phases. To show these results we use our previous achievements on local well-posedness together with suitable novel regularity results for the convective Cahn-Hilliard equation. The latter allows to obtain higher-order energy estimates to extend the local solution globally in time. To this aim the time evolution of energy type quantities has to be calculated and estimated carefully.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.