Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hua Chen, Xin Liao, Ming Zhang
{"title":"Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation","authors":"Hua Chen, Xin Liao, Ming Zhang","doi":"10.1007/s00526-024-02708-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e. </p><span>$$\\begin{aligned} \\Big \\{\\begin{array}{l} -(\\Delta _{x} u+(\\alpha +1)^2|x|^{2 \\alpha } \\Delta _{y} u)=u^{\\frac{Q+2}{Q-2}} + \\lambda u\\log u^2,\\\\ u=0~~ \\text { on } \\partial \\Omega , \\end{array} \\end{aligned}$$</span>(0.2)<p>where <span>\\((x,y)\\in \\Omega \\subset \\mathbb {R}^N = \\mathbb {R}^m \\times \\mathbb {R}^n\\)</span> with <span>\\(m \\ge 1\\)</span>, <span>\\(n\\ge 0\\)</span>, <span>\\(\\Omega \\cap \\{x=0\\}\\ne \\emptyset \\)</span> is a bounded domain, the parameter <span>\\(\\alpha \\ge 0\\)</span> and <span>\\( Q=m+ n(\\alpha +1)\\)</span> denotes the “homogeneous dimension” of <span>\\(\\mathbb {R}^N\\)</span>. When <span>\\(\\lambda =0\\)</span>, we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for <span>\\(\\lambda \\in \\mathbb {R}\\backslash \\{0\\}\\)</span>, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02708-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e.

$$\begin{aligned} \Big \{\begin{array}{l} -(\Delta _{x} u+(\alpha +1)^2|x|^{2 \alpha } \Delta _{y} u)=u^{\frac{Q+2}{Q-2}} + \lambda u\log u^2,\\ u=0~~ \text { on } \partial \Omega , \end{array} \end{aligned}$$(0.2)

where \((x,y)\in \Omega \subset \mathbb {R}^N = \mathbb {R}^m \times \mathbb {R}^n\) with \(m \ge 1\), \(n\ge 0\), \(\Omega \cap \{x=0\}\ne \emptyset \) is a bounded domain, the parameter \(\alpha \ge 0\) and \( Q=m+ n(\alpha +1)\) denotes the “homogeneous dimension” of \(\mathbb {R}^N\). When \(\lambda =0\), we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for \(\lambda \in \mathbb {R}\backslash \{0\}\), we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.

一类具有临界增长和对数扰动的非线性退化椭圆算子的 Dirichlet 问题
本文研究了一类具有临界非线性和对数扰动的退化椭圆狄里夏特问题的弱解存在性,即 $$\begin{aligned}\Big \{begin{array}{l} -(\Delta _{x} u+(\alpha +1)^2|x|^{2 \alpha }.\Delta _{y} u)=u^{frac{Q+2}{Q-2}}+lambda u\log u^2,u=0~~ (text { on }\Partial \Omega , \end{array}\end{aligned}$(0.2) where \((x,y)\in \Omega \subset \mathbb {R}^N = \mathbb {R}^m \times \mathbb {R}^n\) with \(m \ge 1\), \(n\ge 0\), \(\Omega \cap \{x=0\}\ne \emptyset \) is a bounded domain、参数 \(\alpha \ge 0\) 和 \( Q=m+ n(\alpha +1)\) 表示 \(\mathbb {R}^N\) 的 "同次元维度"。当 \(\lambda =0\) 时,我们知道 [23] 问题(0.2)有一个 Pohožaev 型的不存在结果。那么对于 \(\lambda \in \mathbb {R}\backslash \{0\}\),我们在一定条件下建立了非负基态弱解和非三维弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信