{"title":"一类具有临界增长和对数扰动的非线性退化椭圆算子的 Dirichlet 问题","authors":"Hua Chen, Xin Liao, Ming Zhang","doi":"10.1007/s00526-024-02708-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e. </p><span>$$\\begin{aligned} \\Big \\{\\begin{array}{l} -(\\Delta _{x} u+(\\alpha +1)^2|x|^{2 \\alpha } \\Delta _{y} u)=u^{\\frac{Q+2}{Q-2}} + \\lambda u\\log u^2,\\\\ u=0~~ \\text { on } \\partial \\Omega , \\end{array} \\end{aligned}$$</span>(0.2)<p>where <span>\\((x,y)\\in \\Omega \\subset \\mathbb {R}^N = \\mathbb {R}^m \\times \\mathbb {R}^n\\)</span> with <span>\\(m \\ge 1\\)</span>, <span>\\(n\\ge 0\\)</span>, <span>\\(\\Omega \\cap \\{x=0\\}\\ne \\emptyset \\)</span> is a bounded domain, the parameter <span>\\(\\alpha \\ge 0\\)</span> and <span>\\( Q=m+ n(\\alpha +1)\\)</span> denotes the “homogeneous dimension” of <span>\\(\\mathbb {R}^N\\)</span>. When <span>\\(\\lambda =0\\)</span>, we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for <span>\\(\\lambda \\in \\mathbb {R}\\backslash \\{0\\}\\)</span>, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation\",\"authors\":\"Hua Chen, Xin Liao, Ming Zhang\",\"doi\":\"10.1007/s00526-024-02708-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e. </p><span>$$\\\\begin{aligned} \\\\Big \\\\{\\\\begin{array}{l} -(\\\\Delta _{x} u+(\\\\alpha +1)^2|x|^{2 \\\\alpha } \\\\Delta _{y} u)=u^{\\\\frac{Q+2}{Q-2}} + \\\\lambda u\\\\log u^2,\\\\\\\\ u=0~~ \\\\text { on } \\\\partial \\\\Omega , \\\\end{array} \\\\end{aligned}$$</span>(0.2)<p>where <span>\\\\((x,y)\\\\in \\\\Omega \\\\subset \\\\mathbb {R}^N = \\\\mathbb {R}^m \\\\times \\\\mathbb {R}^n\\\\)</span> with <span>\\\\(m \\\\ge 1\\\\)</span>, <span>\\\\(n\\\\ge 0\\\\)</span>, <span>\\\\(\\\\Omega \\\\cap \\\\{x=0\\\\}\\\\ne \\\\emptyset \\\\)</span> is a bounded domain, the parameter <span>\\\\(\\\\alpha \\\\ge 0\\\\)</span> and <span>\\\\( Q=m+ n(\\\\alpha +1)\\\\)</span> denotes the “homogeneous dimension” of <span>\\\\(\\\\mathbb {R}^N\\\\)</span>. When <span>\\\\(\\\\lambda =0\\\\)</span>, we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for <span>\\\\(\\\\lambda \\\\in \\\\mathbb {R}\\\\backslash \\\\{0\\\\}\\\\)</span>, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02708-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02708-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation
In this paper, we investigate the existence of weak solutions for a class of degenerate elliptic Dirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e.
where \((x,y)\in \Omega \subset \mathbb {R}^N = \mathbb {R}^m \times \mathbb {R}^n\) with \(m \ge 1\), \(n\ge 0\), \(\Omega \cap \{x=0\}\ne \emptyset \) is a bounded domain, the parameter \(\alpha \ge 0\) and \( Q=m+ n(\alpha +1)\) denotes the “homogeneous dimension” of \(\mathbb {R}^N\). When \(\lambda =0\), we know that from [23] the problem (0.2) has a Pohožaev-type non-existence result. Then for \(\lambda \in \mathbb {R}\backslash \{0\}\), we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions.