{"title":"Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations","authors":"Zihao Song","doi":"10.1007/s00526-024-02723-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the Navier–Stokes–Korteweg equations governed by the evolution of compressible fluids with capillarity effects. We first investigate the global well-posedness of solution in the critical Besov space for large initial data. Contrary to pure parabolic methods in Charve et al. (Indiana Univ Math J 70:1903–1944, 2021), we also take the strong dispersion due to large capillarity coefficient <span>\\(\\kappa \\)</span> into considerations. By establishing a dissipative–dispersive estimate, we are able to obtain uniform estimates and incompressible limits in terms of <span>\\(\\kappa \\)</span> simultaneously. Secondly, we establish the large time behaviors of the solution. We would make full use of both parabolic mechanics and dispersive structure which implicates our decay results without limitations for upper bound of derivatives while requiring no smallness for initial assumption.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02723-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the Navier–Stokes–Korteweg equations governed by the evolution of compressible fluids with capillarity effects. We first investigate the global well-posedness of solution in the critical Besov space for large initial data. Contrary to pure parabolic methods in Charve et al. (Indiana Univ Math J 70:1903–1944, 2021), we also take the strong dispersion due to large capillarity coefficient \(\kappa \) into considerations. By establishing a dissipative–dispersive estimate, we are able to obtain uniform estimates and incompressible limits in terms of \(\kappa \) simultaneously. Secondly, we establish the large time behaviors of the solution. We would make full use of both parabolic mechanics and dispersive structure which implicates our decay results without limitations for upper bound of derivatives while requiring no smallness for initial assumption.