{"title":"部分超定问题和毛细CMC超曲面的刚性和定量稳定性","authors":"Xiaohan Jia, Zheng Lu, Chao Xia, Xuwen Zhang","doi":"10.1007/s00526-024-02733-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first prove a rigidity result for a Serrin-type partially overdetermined problem in the half-space, which gives a characterization of capillary spherical caps by the overdetermined problem. In the second part, we prove quantitative stability results for the Serrin-type partially overdetermined problem, as well as capillary almost constant mean curvature hypersurfaces in the half-space.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"19 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity and quantitative stability for partially overdetermined problems and capillary CMC hypersurfaces\",\"authors\":\"Xiaohan Jia, Zheng Lu, Chao Xia, Xuwen Zhang\",\"doi\":\"10.1007/s00526-024-02733-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first prove a rigidity result for a Serrin-type partially overdetermined problem in the half-space, which gives a characterization of capillary spherical caps by the overdetermined problem. In the second part, we prove quantitative stability results for the Serrin-type partially overdetermined problem, as well as capillary almost constant mean curvature hypersurfaces in the half-space.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02733-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02733-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rigidity and quantitative stability for partially overdetermined problems and capillary CMC hypersurfaces
In this paper, we first prove a rigidity result for a Serrin-type partially overdetermined problem in the half-space, which gives a characterization of capillary spherical caps by the overdetermined problem. In the second part, we prove quantitative stability results for the Serrin-type partially overdetermined problem, as well as capillary almost constant mean curvature hypersurfaces in the half-space.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.