具有一般势能的分数薛定谔方程的解的存在性和衰减性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yinbin Deng, Shuangjie Peng, Xian Yang
{"title":"具有一般势能的分数薛定谔方程的解的存在性和衰减性","authors":"Yinbin Deng, Shuangjie Peng, Xian Yang","doi":"10.1007/s00526-024-02728-2","DOIUrl":null,"url":null,"abstract":"<p>We revisit the following fractional Schrödinger equation </p><span>$$\\begin{aligned} \\varepsilon ^{2s}(-\\Delta )^su +Vu=u^{p-1},\\,\\,\\,u&gt;0,\\ \\ \\ \\textrm{in}\\ {\\mathbb {R}}^N, \\end{aligned}$$</span>(0.1)<p>where <span>\\(\\varepsilon &gt;0\\)</span> is a small parameter, <span>\\((-\\Delta )^s\\)</span> denotes the fractional Laplacian, <span>\\(s\\in (0,1)\\)</span>, <span>\\(p\\in (2, 2_s^*)\\)</span>, <span>\\(2_s^*=\\frac{2N}{N-2s}\\)</span>, <span>\\(N&gt;2s\\)</span>, <span>\\(V\\in C\\big ({\\mathbb {R}}^N, [0, +\\infty )\\big )\\)</span> is a general potential. Under various assumptions on <i>V</i>(<i>x</i>) at infinity, including <i>V</i>(<i>x</i>) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value <span>\\(p_*\\)</span>, such that the above problem admits positive concentration solutions if <span>\\(p\\in (p_*, \\,2_s^*)\\)</span>, while it has no positive weak solutions for <span>\\(p\\in (2,\\,p_*)\\)</span> if <span>\\(p_*&gt;2\\)</span>, where the threshold <span>\\(p_*\\in [2, 2^*_s)\\)</span> can be characterized explicitly by</p><span>$$\\begin{aligned} p_*=\\left\\{ \\begin{array}{ll} 2+\\frac{2s}{N-2s} &amp;{}\\quad \\text{ if } \\lim \\limits _{|x| \\rightarrow \\infty } (1+|x|^{2s})V(x)=0,\\\\ 2+\\frac{\\omega }{N+2s-\\omega } &amp;{}\\quad \\text{ if } 0\\!&lt;\\!\\inf (1\\!+\\!|x|^\\omega )V(x)\\!\\le \\! \\sup (1\\!+\\!|x|^\\omega )V(x)\\!&lt;\\! \\infty \\text{ for } \\text{ some } \\omega \\!\\in \\! [0, 2s],\\\\ 2&amp;{}\\quad \\text{ if } \\inf V(x)\\log (e+|x|^2)&gt;0. \\end{array}\\right. \\end{aligned}$$</span><p>Moreover, corresponding to the various decay assumptions of <i>V</i>(<i>x</i>), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and decays of solutions for fractional Schrödinger equations with general potentials\",\"authors\":\"Yinbin Deng, Shuangjie Peng, Xian Yang\",\"doi\":\"10.1007/s00526-024-02728-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the following fractional Schrödinger equation </p><span>$$\\\\begin{aligned} \\\\varepsilon ^{2s}(-\\\\Delta )^su +Vu=u^{p-1},\\\\,\\\\,\\\\,u&gt;0,\\\\ \\\\ \\\\ \\\\textrm{in}\\\\ {\\\\mathbb {R}}^N, \\\\end{aligned}$$</span>(0.1)<p>where <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> is a small parameter, <span>\\\\((-\\\\Delta )^s\\\\)</span> denotes the fractional Laplacian, <span>\\\\(s\\\\in (0,1)\\\\)</span>, <span>\\\\(p\\\\in (2, 2_s^*)\\\\)</span>, <span>\\\\(2_s^*=\\\\frac{2N}{N-2s}\\\\)</span>, <span>\\\\(N&gt;2s\\\\)</span>, <span>\\\\(V\\\\in C\\\\big ({\\\\mathbb {R}}^N, [0, +\\\\infty )\\\\big )\\\\)</span> is a general potential. Under various assumptions on <i>V</i>(<i>x</i>) at infinity, including <i>V</i>(<i>x</i>) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value <span>\\\\(p_*\\\\)</span>, such that the above problem admits positive concentration solutions if <span>\\\\(p\\\\in (p_*, \\\\,2_s^*)\\\\)</span>, while it has no positive weak solutions for <span>\\\\(p\\\\in (2,\\\\,p_*)\\\\)</span> if <span>\\\\(p_*&gt;2\\\\)</span>, where the threshold <span>\\\\(p_*\\\\in [2, 2^*_s)\\\\)</span> can be characterized explicitly by</p><span>$$\\\\begin{aligned} p_*=\\\\left\\\\{ \\\\begin{array}{ll} 2+\\\\frac{2s}{N-2s} &amp;{}\\\\quad \\\\text{ if } \\\\lim \\\\limits _{|x| \\\\rightarrow \\\\infty } (1+|x|^{2s})V(x)=0,\\\\\\\\ 2+\\\\frac{\\\\omega }{N+2s-\\\\omega } &amp;{}\\\\quad \\\\text{ if } 0\\\\!&lt;\\\\!\\\\inf (1\\\\!+\\\\!|x|^\\\\omega )V(x)\\\\!\\\\le \\\\! \\\\sup (1\\\\!+\\\\!|x|^\\\\omega )V(x)\\\\!&lt;\\\\! \\\\infty \\\\text{ for } \\\\text{ some } \\\\omega \\\\!\\\\in \\\\! [0, 2s],\\\\\\\\ 2&amp;{}\\\\quad \\\\text{ if } \\\\inf V(x)\\\\log (e+|x|^2)&gt;0. \\\\end{array}\\\\right. \\\\end{aligned}$$</span><p>Moreover, corresponding to the various decay assumptions of <i>V</i>(<i>x</i>), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02728-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02728-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们重温以下分数薛定谔方程 $$begin{aligned}\varepsilon ^{2s}(-\Delta )^su +Vu=u^{p-1},\,\,\,u>0,\ \textrm{in}\ {\mathbb {R}}^N, \end{aligned}$(0.1)其中 \(\varepsilon >0\) 是一个小参数, \((-\Delta )^s\) 表示分数拉普拉奇, \(s\in (0,1)\), \(p\in (2, 2_s^*)\), \(2_s^*=\frac{2N}{N-2s}\), \(N>;2s\),\(V\in C\big ({\mathbb {R}}^N, [0, +\infty )\big )是一个一般的势。在对无穷远处的 V(x) 的各种假设下,包括 V(x) 在无穷远处以各种速率衰减的假设,我们引入了统一的惩罚论证,并给出了正解存在与不存在的完整结果。更确切地说,我们将比较原理与迭代过程相结合,检测出了一个明确的阈值 \(p_*\),这样如果 \(p\in (p_*, \,2_s^*)\),上述问题就会有正的集中解,而如果 \(p_*>.2\),对于 \(p\in (2,\,p_*)\) 则没有正的弱解;2), 其中阈值 \(p_*\in [2, 2^*_s)\) 可以通过$$\begin{aligned}p_*=left\{\begin{array}{ll} 2+frac{2s}{N-2s} &{}\quad \text{ if }明确地描述出来。\lim \limits _{|x| \rightarrow \infty }(1+|x|^{2s})V(x)=0,2+frac{omega }{N+2s-\omega } &{}\quad \text{ if }0\!<\!inf (1\!+\!|x|^\omega )V(x)\!\sup (1\!+\!|x|^\omega )V(x)\!<\!\text{ for }\(text{ some }\[0, 2s],[0,2s],[0,2s][0, 2s],2&{}\quad \text{ if }\inf V(x)log (e+|x|^2)>0.\end{array}\right.\end{aligned}$$此外,对应于 V(x) 的各种衰减假设,我们得到了解在无穷远处的衰减性质。我们的结果揭示了这类问题解的存在与衰减的一些新现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and decays of solutions for fractional Schrödinger equations with general potentials

We revisit the following fractional Schrödinger equation

$$\begin{aligned} \varepsilon ^{2s}(-\Delta )^su +Vu=u^{p-1},\,\,\,u>0,\ \ \ \textrm{in}\ {\mathbb {R}}^N, \end{aligned}$$(0.1)

where \(\varepsilon >0\) is a small parameter, \((-\Delta )^s\) denotes the fractional Laplacian, \(s\in (0,1)\), \(p\in (2, 2_s^*)\), \(2_s^*=\frac{2N}{N-2s}\), \(N>2s\), \(V\in C\big ({\mathbb {R}}^N, [0, +\infty )\big )\) is a general potential. Under various assumptions on V(x) at infinity, including V(x) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value \(p_*\), such that the above problem admits positive concentration solutions if \(p\in (p_*, \,2_s^*)\), while it has no positive weak solutions for \(p\in (2,\,p_*)\) if \(p_*>2\), where the threshold \(p_*\in [2, 2^*_s)\) can be characterized explicitly by

$$\begin{aligned} p_*=\left\{ \begin{array}{ll} 2+\frac{2s}{N-2s} &{}\quad \text{ if } \lim \limits _{|x| \rightarrow \infty } (1+|x|^{2s})V(x)=0,\\ 2+\frac{\omega }{N+2s-\omega } &{}\quad \text{ if } 0\!<\!\inf (1\!+\!|x|^\omega )V(x)\!\le \! \sup (1\!+\!|x|^\omega )V(x)\!<\! \infty \text{ for } \text{ some } \omega \!\in \! [0, 2s],\\ 2&{}\quad \text{ if } \inf V(x)\log (e+|x|^2)>0. \end{array}\right. \end{aligned}$$

Moreover, corresponding to the various decay assumptions of V(x), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信