{"title":"具有一般势能的分数薛定谔方程的解的存在性和衰减性","authors":"Yinbin Deng, Shuangjie Peng, Xian Yang","doi":"10.1007/s00526-024-02728-2","DOIUrl":null,"url":null,"abstract":"<p>We revisit the following fractional Schrödinger equation </p><span>$$\\begin{aligned} \\varepsilon ^{2s}(-\\Delta )^su +Vu=u^{p-1},\\,\\,\\,u>0,\\ \\ \\ \\textrm{in}\\ {\\mathbb {R}}^N, \\end{aligned}$$</span>(0.1)<p>where <span>\\(\\varepsilon >0\\)</span> is a small parameter, <span>\\((-\\Delta )^s\\)</span> denotes the fractional Laplacian, <span>\\(s\\in (0,1)\\)</span>, <span>\\(p\\in (2, 2_s^*)\\)</span>, <span>\\(2_s^*=\\frac{2N}{N-2s}\\)</span>, <span>\\(N>2s\\)</span>, <span>\\(V\\in C\\big ({\\mathbb {R}}^N, [0, +\\infty )\\big )\\)</span> is a general potential. Under various assumptions on <i>V</i>(<i>x</i>) at infinity, including <i>V</i>(<i>x</i>) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value <span>\\(p_*\\)</span>, such that the above problem admits positive concentration solutions if <span>\\(p\\in (p_*, \\,2_s^*)\\)</span>, while it has no positive weak solutions for <span>\\(p\\in (2,\\,p_*)\\)</span> if <span>\\(p_*>2\\)</span>, where the threshold <span>\\(p_*\\in [2, 2^*_s)\\)</span> can be characterized explicitly by</p><span>$$\\begin{aligned} p_*=\\left\\{ \\begin{array}{ll} 2+\\frac{2s}{N-2s} &{}\\quad \\text{ if } \\lim \\limits _{|x| \\rightarrow \\infty } (1+|x|^{2s})V(x)=0,\\\\ 2+\\frac{\\omega }{N+2s-\\omega } &{}\\quad \\text{ if } 0\\!<\\!\\inf (1\\!+\\!|x|^\\omega )V(x)\\!\\le \\! \\sup (1\\!+\\!|x|^\\omega )V(x)\\!<\\! \\infty \\text{ for } \\text{ some } \\omega \\!\\in \\! [0, 2s],\\\\ 2&{}\\quad \\text{ if } \\inf V(x)\\log (e+|x|^2)>0. \\end{array}\\right. \\end{aligned}$$</span><p>Moreover, corresponding to the various decay assumptions of <i>V</i>(<i>x</i>), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and decays of solutions for fractional Schrödinger equations with general potentials\",\"authors\":\"Yinbin Deng, Shuangjie Peng, Xian Yang\",\"doi\":\"10.1007/s00526-024-02728-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the following fractional Schrödinger equation </p><span>$$\\\\begin{aligned} \\\\varepsilon ^{2s}(-\\\\Delta )^su +Vu=u^{p-1},\\\\,\\\\,\\\\,u>0,\\\\ \\\\ \\\\ \\\\textrm{in}\\\\ {\\\\mathbb {R}}^N, \\\\end{aligned}$$</span>(0.1)<p>where <span>\\\\(\\\\varepsilon >0\\\\)</span> is a small parameter, <span>\\\\((-\\\\Delta )^s\\\\)</span> denotes the fractional Laplacian, <span>\\\\(s\\\\in (0,1)\\\\)</span>, <span>\\\\(p\\\\in (2, 2_s^*)\\\\)</span>, <span>\\\\(2_s^*=\\\\frac{2N}{N-2s}\\\\)</span>, <span>\\\\(N>2s\\\\)</span>, <span>\\\\(V\\\\in C\\\\big ({\\\\mathbb {R}}^N, [0, +\\\\infty )\\\\big )\\\\)</span> is a general potential. Under various assumptions on <i>V</i>(<i>x</i>) at infinity, including <i>V</i>(<i>x</i>) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value <span>\\\\(p_*\\\\)</span>, such that the above problem admits positive concentration solutions if <span>\\\\(p\\\\in (p_*, \\\\,2_s^*)\\\\)</span>, while it has no positive weak solutions for <span>\\\\(p\\\\in (2,\\\\,p_*)\\\\)</span> if <span>\\\\(p_*>2\\\\)</span>, where the threshold <span>\\\\(p_*\\\\in [2, 2^*_s)\\\\)</span> can be characterized explicitly by</p><span>$$\\\\begin{aligned} p_*=\\\\left\\\\{ \\\\begin{array}{ll} 2+\\\\frac{2s}{N-2s} &{}\\\\quad \\\\text{ if } \\\\lim \\\\limits _{|x| \\\\rightarrow \\\\infty } (1+|x|^{2s})V(x)=0,\\\\\\\\ 2+\\\\frac{\\\\omega }{N+2s-\\\\omega } &{}\\\\quad \\\\text{ if } 0\\\\!<\\\\!\\\\inf (1\\\\!+\\\\!|x|^\\\\omega )V(x)\\\\!\\\\le \\\\! \\\\sup (1\\\\!+\\\\!|x|^\\\\omega )V(x)\\\\!<\\\\! \\\\infty \\\\text{ for } \\\\text{ some } \\\\omega \\\\!\\\\in \\\\! [0, 2s],\\\\\\\\ 2&{}\\\\quad \\\\text{ if } \\\\inf V(x)\\\\log (e+|x|^2)>0. \\\\end{array}\\\\right. \\\\end{aligned}$$</span><p>Moreover, corresponding to the various decay assumptions of <i>V</i>(<i>x</i>), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02728-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02728-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
where \(\varepsilon >0\) is a small parameter, \((-\Delta )^s\) denotes the fractional Laplacian, \(s\in (0,1)\), \(p\in (2, 2_s^*)\), \(2_s^*=\frac{2N}{N-2s}\), \(N>2s\), \(V\in C\big ({\mathbb {R}}^N, [0, +\infty )\big )\) is a general potential. Under various assumptions on V(x) at infinity, including V(x) decaying with various rate at infinity, we introduce a unified penalization argument and give a complete result on the existence and nonexistence of positive solutions. More precisely, we combine a comparison principle with iteration process to detect an explicit threshold value \(p_*\), such that the above problem admits positive concentration solutions if \(p\in (p_*, \,2_s^*)\), while it has no positive weak solutions for \(p\in (2,\,p_*)\) if \(p_*>2\), where the threshold \(p_*\in [2, 2^*_s)\) can be characterized explicitly by
$$\begin{aligned} p_*=\left\{ \begin{array}{ll} 2+\frac{2s}{N-2s} &{}\quad \text{ if } \lim \limits _{|x| \rightarrow \infty } (1+|x|^{2s})V(x)=0,\\ 2+\frac{\omega }{N+2s-\omega } &{}\quad \text{ if } 0\!<\!\inf (1\!+\!|x|^\omega )V(x)\!\le \! \sup (1\!+\!|x|^\omega )V(x)\!<\! \infty \text{ for } \text{ some } \omega \!\in \! [0, 2s],\\ 2&{}\quad \text{ if } \inf V(x)\log (e+|x|^2)>0. \end{array}\right. \end{aligned}$$
Moreover, corresponding to the various decay assumptions of V(x), we obtain the decay properties of the solutions at infinity. Our results reveal some new phenomena on the existence and decays of the solutions to this type of problems.