一类指数源四阶色散波方程

IF 2.1 2区 数学 Q1 MATHEMATICS
Tran Quang Minh, Hong-Danh Pham, Mirelson M. Freitas
{"title":"一类指数源四阶色散波方程","authors":"Tran Quang Minh, Hong-Danh Pham, Mirelson M. Freitas","doi":"10.1007/s00526-024-02731-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with a class of fourth-order dispersive wave equations with <i>exponential</i> source term. Firstly, by applying the contraction mapping principle, we establish the local existence and uniqueness of the solution. In the spirit of the variational principle and mountain pass theorem, a natural phase space is precisely divided into three different energy levels. Then we introduce a family of potential wells to derive a threshold of the existence of global solutions and blow up in finite time of solution in both cases with sub-critical and critical initial energy. These results can be used to extend the previous result obtained by Alves and Cavalcanti (Calc. Var. Partial Differ. Equ. 34 (2009) 377–411). Moreover, an explicit sufficient condition for initial data leading to blow up result is established at an arbitrarily positive initial energy level.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"54 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of fourth-order dispersive wave equations with exponential source\",\"authors\":\"Tran Quang Minh, Hong-Danh Pham, Mirelson M. Freitas\",\"doi\":\"10.1007/s00526-024-02731-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with a class of fourth-order dispersive wave equations with <i>exponential</i> source term. Firstly, by applying the contraction mapping principle, we establish the local existence and uniqueness of the solution. In the spirit of the variational principle and mountain pass theorem, a natural phase space is precisely divided into three different energy levels. Then we introduce a family of potential wells to derive a threshold of the existence of global solutions and blow up in finite time of solution in both cases with sub-critical and critical initial energy. These results can be used to extend the previous result obtained by Alves and Cavalcanti (Calc. Var. Partial Differ. Equ. 34 (2009) 377–411). Moreover, an explicit sufficient condition for initial data leading to blow up result is established at an arbitrarily positive initial energy level.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02731-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02731-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究一类带指数源项的四阶色散波方程。首先,我们应用收缩映射原理,建立了解的局部存在性和唯一性。根据变分原理和山口定理的精神,我们将一个自然相空间精确地划分为三个不同的能级。然后,我们引入势阱族,推导出全局解存在的临界值,并在亚临界和临界初始能量两种情况下,在有限时间内炸毁解。这些结果可用于扩展 Alves 和 Cavalcanti 之前获得的结果(Calc.Var.Partial Differ.Equ.34 (2009) 377-411).此外,在任意正初始能量水平上,建立了导致炸毁结果的初始数据的明确充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of fourth-order dispersive wave equations with exponential source

This paper is concerned with a class of fourth-order dispersive wave equations with exponential source term. Firstly, by applying the contraction mapping principle, we establish the local existence and uniqueness of the solution. In the spirit of the variational principle and mountain pass theorem, a natural phase space is precisely divided into three different energy levels. Then we introduce a family of potential wells to derive a threshold of the existence of global solutions and blow up in finite time of solution in both cases with sub-critical and critical initial energy. These results can be used to extend the previous result obtained by Alves and Cavalcanti (Calc. Var. Partial Differ. Equ. 34 (2009) 377–411). Moreover, an explicit sufficient condition for initial data leading to blow up result is established at an arbitrarily positive initial energy level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
4.80%
发文量
224
审稿时长
6 months
期刊介绍: Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives. This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include: - Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory - Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems - Variational problems in differential and complex geometry - Variational methods in global analysis and topology - Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems - Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions - Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信