{"title":"Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of <i>Staphylococcus aureus</i>.","authors":"Kritika Narula, Soumya Rajpal, Snehasis Bhakta, Senthilguru Kulanthaivel, Prashant Mishra","doi":"10.1039/d4tb00392f","DOIUrl":"10.1039/d4tb00392f","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect <i>S. aureus</i> using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to <i>S. aureus</i>. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to <i>S. aureus</i>, whereas negligible binding to other non-specific Gram-negative, <i>i.e. Escherichia coli</i> (<i>E. coli</i>), <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>), and Gram-positive, <i>i.e. Bacillus subtilis</i> (<i>B. subtilis</i>), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled <i>S. aureus.</i> Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 10<sup>1</sup>-10<sup>7</sup> bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with <i>S. aureus</i> (10<sup>6</sup> CFU mL<sup>-1</sup>), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as <i>S. aureus</i> infections and contaminations.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5699-5710"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Looking back, moving forward: protein corona of lipid nanoparticles.","authors":"Yue Gao, Yeqi Huang, Chuanyu Ren, Peiwen Chou, Chuanbin Wu, Xin Pan, Guilan Quan, Zhengwei Huang","doi":"10.1039/d4tb00186a","DOIUrl":"10.1039/d4tb00186a","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's <i>in vivo</i> fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing <i>ex vivo</i> fluids (<i>e.g.</i>, serum-containing culture media) and <i>in vivo</i> fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the <i>in vivo</i> fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5573-5588"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid exfoliation of molybdenum metallenes for non-inflammatory photothermal therapy of tumors.","authors":"Chenxin Lu, Xiang Huang, Zhaoying Jin, Junwei Deng, Zhengbao Zha, Zhaohua Miao","doi":"10.1039/d4tb00525b","DOIUrl":"10.1039/d4tb00525b","url":null,"abstract":"<p><p>Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects <i>in vitro</i>. For <i>in vivo</i> experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5690-5698"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa Tüfekçi, Sena Hamarat, Tuğba Demir Çalışkan, Hatice Ferda Özgüzar, Ahmet Ersin Meydan, Julide Sedef Göçmen, Ebru Evren, Mehmet İlker Gökçe, Hilal Goktas
{"title":"Long-term antifouling surfaces for urinary catheters.","authors":"Mustafa Tüfekçi, Sena Hamarat, Tuğba Demir Çalışkan, Hatice Ferda Özgüzar, Ahmet Ersin Meydan, Julide Sedef Göçmen, Ebru Evren, Mehmet İlker Gökçe, Hilal Goktas","doi":"10.1039/d4tb00311j","DOIUrl":"https://doi.org/10.1039/d4tb00311j","url":null,"abstract":"<p><p>The presence of a variety of bacteria is an inevitable/indispensable part of human life. In particular, for patients, the existence and spreading of bacteria lead to prolonged treatment period with many more complications. The widespread use of urinary catheters is one of the main causes for the prevalence of infections. The necessity of long-term use of indwelling catheters is unavoidable in terms of the development of bacteriuria and blockage. As is known, since a permanent solution to this problem has not yet been found, research and development activities continue actively. Herein, polyethylene glycol (PEG)-like thin films were synthesized by a custom designed plasma enhanced chemical vapor deposition (PE-CVD) method and the long-term effect of antifouling properties of PEG-like coated catheters was investigated against <i>Escherichia coli</i> and <i>Proteus mirabilis</i>. The contact angle measurements have revealed the increase of wettability with the increase of plasma exposure time. The antifouling activity of surface-coated catheters was analyzed against the Gram-negative/positive bacteria over a long-term period (up to 30 days). The results revealed that PE-CVD coated PEG-like thin films are highly capable of eliminating bacterial attachment on surfaces with relatively reduced protein attachment without having any toxic effect. Previous statements were supported with SEM, XPS, FTIR spectroscopy, and contact angle analysis.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dual-color ESIPT-based probe for simultaneous detection of hydrogen sulfide and hydrazine.","authors":"Qian Gong, Youbo Lai, Weiying Lin","doi":"10.1039/d4tb00318g","DOIUrl":"https://doi.org/10.1039/d4tb00318g","url":null,"abstract":"Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":"43 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}