Molten stringing 3D printed microfibrous net-integrated mineralized hydrogels with tunable micromechanical and cell-responsive properties.

Dongxuan Li, Fengxiong Luo, Yu Yang, Ziqi Zhao, Ruiqi Mao, Yawen Huang, Yafang Chen, Kefeng Wang, Yujiang Fan, Xingdong Zhang
{"title":"Molten stringing 3D printed microfibrous net-integrated mineralized hydrogels with tunable micromechanical and cell-responsive properties.","authors":"Dongxuan Li, Fengxiong Luo, Yu Yang, Ziqi Zhao, Ruiqi Mao, Yawen Huang, Yafang Chen, Kefeng Wang, Yujiang Fan, Xingdong Zhang","doi":"10.1039/d5tb00449g","DOIUrl":null,"url":null,"abstract":"<p><p>Micro/nanofibrous materials play an increasingly important role in tissue regeneration due to their ECM-mimicking properties and mechanical regulation capabilities. This study developed a microfiber fabrication method based on molten stringing of fused deposition modeling (FDM), successfully creating an ordered microfiber network with spatial structures. It surpasses the size limits of FDM filaments, enabling the precise fabrication of microfibers with diameters of 15-150 μm. The customizable PLA microfiberous-net was then encapsulated in GelMA hydrogel and mineralized <i>in situ</i>, effectively producing biomimetic bone repair materials with customization of surface microstructures and control of micromechanics, which in turn influences and regulates cell behavior. By adjusting the structure and density of the microfiber network, it is possible to control the compressive modulus, viscoelasticity, and tensile strength to match the micromechanical environment for cell spreading and proliferation. Additionally, the network structure can guide cell alignment and aggregation, influencing cell morphology and enabling controlled guidance of cellular behavior. Our simple and convenient microfibrous printing method holds great potential for the preparation of various fibrous materials for tissue regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00449g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro/nanofibrous materials play an increasingly important role in tissue regeneration due to their ECM-mimicking properties and mechanical regulation capabilities. This study developed a microfiber fabrication method based on molten stringing of fused deposition modeling (FDM), successfully creating an ordered microfiber network with spatial structures. It surpasses the size limits of FDM filaments, enabling the precise fabrication of microfibers with diameters of 15-150 μm. The customizable PLA microfiberous-net was then encapsulated in GelMA hydrogel and mineralized in situ, effectively producing biomimetic bone repair materials with customization of surface microstructures and control of micromechanics, which in turn influences and regulates cell behavior. By adjusting the structure and density of the microfiber network, it is possible to control the compressive modulus, viscoelasticity, and tensile strength to match the micromechanical environment for cell spreading and proliferation. Additionally, the network structure can guide cell alignment and aggregation, influencing cell morphology and enabling controlled guidance of cellular behavior. Our simple and convenient microfibrous printing method holds great potential for the preparation of various fibrous materials for tissue regeneration.

熔融线3D打印微纤维网集成矿化水凝胶具有可调的微机械和细胞响应特性。
微/纳米纤维材料由于其模拟细胞外基质的特性和机械调节能力,在组织再生中发挥着越来越重要的作用。本研究开发了一种基于熔融熔结建模(FDM)的超细纤维制备方法,成功地构建了具有空间结构的有序超细纤维网络。它超越了FDM长丝的尺寸限制,能够精确制造直径为15-150 μm的微纤维。然后将可定制的PLA微纤维网封装在GelMA水凝胶中并原位矿化,有效地生产出具有定制表面微结构和微力学控制的仿生骨修复材料,从而影响和调节细胞行为。通过调整微纤维网络的结构和密度,可以控制微纤维网络的压缩模量、粘弹性和拉伸强度,以适应细胞扩散和增殖的微力学环境。此外,网络结构可以引导细胞排列和聚集,影响细胞形态并实现细胞行为的可控指导。这种简单方便的微纤维打印方法在制备各种用于组织再生的纤维材料方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信