Markus Kötzsche, Jan Egger, Andreas Dzierza, Liên Sabrina Reichel, Ivo Nischang, Anja Traeger, Dagmar Fischer, Kalina Peneva
{"title":"Making the negative positive - fluorination of indole as an efficient strategy to improve guanidinium-containing gene carriers.","authors":"Markus Kötzsche, Jan Egger, Andreas Dzierza, Liên Sabrina Reichel, Ivo Nischang, Anja Traeger, Dagmar Fischer, Kalina Peneva","doi":"10.1039/d4tb02529f","DOIUrl":"https://doi.org/10.1039/d4tb02529f","url":null,"abstract":"<p><p>The balance between hydrophilic and hydrophobic components plays an important role in polymeric delivery of nucleic acids. Besides using hydrophobic moieties in the polymer design, fluorination is a promising method to increase the hydrophobicity of polymers. To systematically investigate this effect, <i>N</i>-(2-(1<i>H</i>-indol-3-yl)ethyl)methacrylamide and three fluorinated analogues have been synthesized and copolymerized with 3-guanidinopropyl methacrylamide and 2-hydroxypropyl methacrylamide <i>via</i> an aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization. A library of eight terpolymers with 5 to 23 mol% of an indole analogue and molar mass about 20 kg mol<sup>-1</sup> showed comparably strong DNA binding starting at N/P 2 and formed polyplexes with hydrodynamic diameters around 100 nm. Additionally, no negative impact on biocompatibility was observed. Heparin release studies showed increased DNA binding strength with higher amounts of hydrophobic moieties, while fluorination exhibited similar effects as increasing the indole content. This was also important for pDNA transfection efficiency, where an optimum for DNA binding strength was unveiled. The rapid release and the excessive binding of DNA were identified as factors that negatively impacted transfection efficiency, both influenced by the amount of indole moieties and fluorination. On the other hand, the right degree of hydrophobicity was able to increase the transfection efficiency of the modified polymer by more than threefold. These findings highlight the role of hydrophobic moieties in nucleic acid delivery and provide valuable insights for future polymer design, suggesting that the strategic incorporation of fluorinated monomers can effectively fine-tune DNA interactions.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing processes and unveiling the therapeutic potential of electrospun gelatin nanofibers for biomedical applications.","authors":"Sivapregassame Vishvaja, Dhamodharan Priyadharshini, Govindaraj Sabarees, Ganesan Padmini Tamilarasi, Siddan Gouthaman, Viswas Raja Solomon","doi":"10.1039/d4tb02769h","DOIUrl":"https://doi.org/10.1039/d4tb02769h","url":null,"abstract":"<p><p>Gelatin, derived primarily from animal sources such as bovine, porcine, and fish skin and bones, exhibits remarkable properties that make it an ideal candidate for various contemporary applications. Its unique attributes include excellent biocompatibility, non-toxicity, biodegradability, low immunogenicity, ease of chemical modification, and structural similarity to the extracellular matrix (ECM). These features have led to the development of gelatin-based biomaterials with tunable properties and specialized functionalities. Electrospinning remains the most widely adopted and effective technique for fabricating gelatin nanofibers. These nanofibers are gaining significant attention in the biomedical sector due to their adjustable fiber morphology, enhanced surface properties, controllable porosity, mechanical adaptability, high surface area, multi-scale pore size distribution, and intrinsic bioactive characteristics. Functionalized gelatin-based electrospun nanofibers are a rapidly advancing area in the life sciences, enabling the creation of innovative drug delivery platforms and next-generation scaffolds for tissue regeneration. Their applications span across various domains, including bone and cartilage repair, retinal and vascular engineering, myocardial regeneration, cancer therapy, chronic wound management, and biosensor development. In this article, we provide a comprehensive assessment of the progression of gelatin-based nanofibers, highlight the critical parameters governing the electrospinning of gelatin, and explore recent innovations in diverse biomedical fields, emphasizing significant advancements and research findings.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topology-dependent <i>T</i><sub>2</sub> relaxivity in Fe<sub>3</sub>O cluster-based MOFs for enhanced tumor monitoring <i>via</i> MRI.","authors":"Qiao Wang, Yimin Gong, Jianing Li, Dan Luo, Xin Zeng, Yun Ling, Yaming Zhou, Zhenxia Chen","doi":"10.1039/d4tb02858a","DOIUrl":"https://doi.org/10.1039/d4tb02858a","url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) are crystalline porous materials with tunable structures, where metal ions or clusters serve as magnetic centers and organic ligands offer spatial separation. These characteristics, combined with their diverse topologies, make MOFs promising candidates for contrast agents (CAs) in magnetic resonance imaging (MRI). Herein we synthesized four MOFs based on the same triangular Fe<sub>3</sub>O clusters with different topologies: MIL-101(Fe) (moo net), MIL-100(Fe) (mtn net), MIL-59(Fe) (pcu net), and MIL-88B(Fe) (acs net). To clarify the relationship between topologies and <i>T</i><sub>2</sub> relaxivities, the MOFs were tailored into uniform, nanoscale spherical morphologies. Notably, the value of <i>T</i><sub>2</sub> relaxivity for MIL-88B(Fe) with acs topology is nearly three times that for MIL-101(Fe) with moo topology at 7.0 T. By comparing the magnetic properties of Fe<sub>3</sub>O molecular clusters and Ga-doped MIL-88B(Fe), our analysis demonstrated the significant advantage of MOFs with fixed arrays, adjustable components and diverse topologies in enhancing magnetic relaxation. Cellular MRI experiments further revealed that MIL-88B(Fe) could differentiate between M1 and M2 macrophages, highlighting its potential for monitoring tumor progression. These findings offer valuable insights into how MOF topology can be strategically utilized to enhance <i>T</i><sub>2</sub> relaxivities for MRI applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanadi M Alqosiri, Hadeel M Alqasiri, Sara E Alqasire, Victor E Nava, Bidhan C Bandyopadhyay, Christopher B Raub
{"title":"Breast cancer extracellular matrix invasion depends on local mechanical loading of the collagen network.","authors":"Hanadi M Alqosiri, Hadeel M Alqasiri, Sara E Alqasire, Victor E Nava, Bidhan C Bandyopadhyay, Christopher B Raub","doi":"10.1039/d4tb01474j","DOIUrl":"https://doi.org/10.1039/d4tb01474j","url":null,"abstract":"<p><p>Active mechanical stresses in and around tumors affect cancer cell behavior and independently regulate cancer progression. To investigate the role of mechanical stress in breast cancer cell invasion, magnetic alginate beads loaded with iron oxide nanoparticles were coated with MDA-MB-231 breast cancer cells and embedded in a three-dimensional extracellular matrix (ECM) model subjected to an external magnetic field during culture. Bead displacement, cell shape and patterns of invasion of the collagen gel, and cell proliferation were assessed over 7 days of culture. The alginate beads swelled over the first 24 h in culture, creating circumferential stress akin to that created by tumor growth, while bead magnetic properties enabled local mechanical loading (compression, tension, and relaxation) and motion within the <i>in vitro</i> tissue constructs upon exposure to an external magnetic field. Beads displaced 0.2-1.6 mm through the collagen gels, depending on magnet size and distance, compressing the collagen network microstructure without gel mechanical failure. Invading cells formed a spatulate pattern as they moved into the compressed ECM region, with individual cells aligned parallel to the bead surface. During the first 24 hours of compressive magnetic force loading, invading cancer cells became round, losing elongation and ability to invade out from the bead surface, while still actively dividing. In contrast, cell invasion in unloaded constructs and in loaded constructs away from the compression region invaded as single cells, transversely outward from the bead surface. Finally, cell proliferation was 1.3× higher only after external magnet removal, which caused relaxation of mechanical stress in the collagen network. These findings indicate effects on breast cancer invasion of mechanical loading of ECM, both from compressive loading and from load relaxation. Findings point to the influence of mechanical stress on cancer cell behavior and suggest that relaxing mechanical stress in and around a tumor may promote cancer progression through higher proliferation and invasion.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiwoo Shin, Sung Min Cho, Youseong Kim, Geonwoo Kang, Tobias Braun, Hermann Tenor, Christian Ludin, Reto Naef, Hyungil Jung
{"title":"Patient-convenient long-term alopecia treatment <i>via</i> PLGA microsphere-loaded candlelit microneedles.","authors":"Jiwoo Shin, Sung Min Cho, Youseong Kim, Geonwoo Kang, Tobias Braun, Hermann Tenor, Christian Ludin, Reto Naef, Hyungil Jung","doi":"10.1039/d5tb00118h","DOIUrl":"https://doi.org/10.1039/d5tb00118h","url":null,"abstract":"<p><p>Androgenetic alopecia (AGA) is characterized by chronic and progressive hair loss, with associated psychological factors intensifying the impact on patients. Current treatments, such as oral finasteride and topical minoxidil, have low bioavailability and numerous side effects. Dissolvable microneedles (DMNs) provide a promising alternative for drug delivery. However, the presence of hair on the scalp often hinders their insertions and adhesion. Thus, candlelit microneedles (CMNs) have been developed to improve insertion and drug delivery without the use of adhesive patches. In this study, CMNs were combined with poly lactic-<i>co</i>-glycolic acid (PLGA) microspheres encapsulating the NO-releasing PDE5 inhibitor TOP-M119 (M119), a potent vasodilator promoting hair growth, for sustained drug release. When delivered <i>via</i> the CMN, it bypasses the challenges posed by hair on the scalp. The CMN system with PLGA microspheres resulted in substantial hair growth and reduced application frequency <i>in vivo</i>. This indicates that it may be a more effective treatment for alopecia than conventional methods. Furthermore, the reduced application frequency may result in better patient compliance.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Injection site-retained lipid nanoparticles for targeted intramuscular delivery of mRNA RSV prefusion-F vaccine.","authors":"Xichao Chen, Honglei Zhang, Dongyang Liu, Jingxuan Ma, Lijie Jin, Yuqing Ma, Jing Li, Gengshen Song, Juxian Wang","doi":"10.1039/d5tb00117j","DOIUrl":"https://doi.org/10.1039/d5tb00117j","url":null,"abstract":"<p><p>mRNA therapeutics, particularly mRNA vaccines, hold significant promise for a wide range of medical applications. Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicles for mRNA, but issues such as off-target effects and liver accumulation hinder their broader clinical adoption. In this study, we designed and synthesized a library of 26 novel ionizable lipids to screen for better delivery efficiency and tissue specificity. After formulating into LNPs, these ionizable lipids exhibited favorable physicochemical properties. <i>In vitro</i> transfection and cytotoxicity assays revealed that LNPs formulated with YK-201, YK-202, and YK-209 showed superior transfection efficiency and low cytotoxicity. In a mouse model, intramuscular injection of Fluc mRNA-LNPs resulted in sustained and localized protein expression at the injection site. When applied to prepare RSV preF-mRNA vaccines, these novel LNPs elicited robust humoral immune responses and reduced lung damage, outperforming the clinically used SM-102. The safety of the LNP formulations was subsequently demonstrated in a mouse model. Collectively, these findings highlight the potential of these novel ionizable lipids as effective injection site-retained mRNA vaccine delivery vehicles.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amin Orash Mahmoudsalehi, Maryam Soleimani, Kevin Stalin Catzim Rios, Wendy Ortega-Lara, Narsimha Mamidi
{"title":"Advanced 3D scaffolds for corneal stroma regeneration: a preclinical progress.","authors":"Amin Orash Mahmoudsalehi, Maryam Soleimani, Kevin Stalin Catzim Rios, Wendy Ortega-Lara, Narsimha Mamidi","doi":"10.1039/d5tb00090d","DOIUrl":"https://doi.org/10.1039/d5tb00090d","url":null,"abstract":"<p><p>Corneal stromal defects represent a significant global cause of blindness, necessitating innovative therapeutic strategies to address the limitations of conventional treatments, such as corneal transplantation. Tissue engineering, a cornerstone of regenerative medicine, offers a transformative approach by leveraging biomaterial-based solutions to restore damaged tissues. Among these, three-dimensional (3D) scaffolds fabricated using advanced techniques like 3D printing have emerged as a promising platform for corneal regeneration. These scaffolds replicate the native extracellular matrix (ECM) architecture, providing a biomimetic microenvironment that supports cell proliferation, differentiation, and tissue integration. This review highlights recent advances in the design and fabrication of 3D scaffolds for corneal stroma engineering (CSE), emphasizing the critical interplay between scaffold architecture, mechanical properties, and bioactive signaling in directing cellular behavior and tissue regeneration. Likewise, we emphasize the diverse range of biomaterials utilized in scaffold fabrication, highlighting their influence on cellular interactions and tissue reconstruction. By elucidating the complex relationship between scaffold design and biologics, this review aims to illuminate the evolution of next-generation strategies for engineering functional corneal tissue. Eventually, this review will provide a comprehensive synthesis of the current state-of-the-art in 3D scaffold-based corneal tissue engineering (CTE), offering insights that could advance progress toward effective vision restoration therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient red-emitting carbon dots and albumin composites for precise synovial bioimaging in rheumatoid arthritis.","authors":"Haojie Li, Longlong Wang, Ke Xiao, Qian He","doi":"10.1039/d4tb02622e","DOIUrl":"10.1039/d4tb02622e","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic autoimmune disorder that frequently leads to significant disabilities and requires complex therapeutic strategies. Early detection and accurate monitoring of synovial lesions are crucial for effective treatment; however, the development of targeted imaging probes remains a significant challenge. Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in the synovium and the concentration of serum albumin is lower in RA patients. Inspired by this, we developed a novel bioimaging strategy for monitoring RA progression by constructing a 100 nm red-fluorescent nanoprobe (CDs@BSA) through electrostatic conjugation of carbon dots (CDs) with bovine serum albumin (BSA). The interaction between BSA and SPARC facilitates precise targeting of RA lesion sites, improving imaging accuracy. The probe demonstrated rapid imaging capabilities, with signal initiation within 1 h and sustained for at least 24 h, enabling the real-time monitoring of disease progression. This work introduces a straightforward approach for designing diagnostic probes using carbon-based nanomaterials, emphasizing their potential for high-resolution, synovial-targeted photoluminescence imaging in RA.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of <i>Staphylococcus aureus</i>.","authors":"Kritika Narula, Soumya Rajpal, Snehasis Bhakta, Senthilguru Kulanthaivel, Prashant Mishra","doi":"10.1039/d4tb00392f","DOIUrl":"10.1039/d4tb00392f","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect <i>S. aureus</i> using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to <i>S. aureus</i>. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to <i>S. aureus</i>, whereas negligible binding to other non-specific Gram-negative, <i>i.e. Escherichia coli</i> (<i>E. coli</i>), <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>), and Gram-positive, <i>i.e. Bacillus subtilis</i> (<i>B. subtilis</i>), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled <i>S. aureus.</i> Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 10<sup>1</sup>-10<sup>7</sup> bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with <i>S. aureus</i> (10<sup>6</sup> CFU mL<sup>-1</sup>), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as <i>S. aureus</i> infections and contaminations.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5699-5710"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Looking back, moving forward: protein corona of lipid nanoparticles.","authors":"Yue Gao, Yeqi Huang, Chuanyu Ren, Peiwen Chou, Chuanbin Wu, Xin Pan, Guilan Quan, Zhengwei Huang","doi":"10.1039/d4tb00186a","DOIUrl":"10.1039/d4tb00186a","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's <i>in vivo</i> fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing <i>ex vivo</i> fluids (<i>e.g.</i>, serum-containing culture media) and <i>in vivo</i> fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the <i>in vivo</i> fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5573-5588"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}