载PRP的重组人胶原微针贴片用于糖尿病创面治疗。

Xinyue Wang, Xinyue Zhang, Yihan Zhao, Xue Zhan, Chen Hu, Haihang Li, Xiaoju Fan, Jie Liang, Yafang Chen, Yujiang Fan
{"title":"载PRP的重组人胶原微针贴片用于糖尿病创面治疗。","authors":"Xinyue Wang, Xinyue Zhang, Yihan Zhao, Xue Zhan, Chen Hu, Haihang Li, Xiaoju Fan, Jie Liang, Yafang Chen, Yujiang Fan","doi":"10.1039/d5tb00836k","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic nonhealing wounds represent significant complications of diabetes, bearing a substantial burden and posing risks of disability or mortality. In diabetic wounds, continuous tissue fluid exudation, inflammatory cell migration, fibrosis, and bacterial biofilm formation create a \"barrier\", which decreases the treating efficacy of therapeutics. To address these limitations, a recombinant human collagen type III microneedle patch (rhCol III-PRP<sup>M</sup>) loaded with platelet-rich plasma (PRP) was developed, in which methacrylated rhCol III (rhCol III-MA) loaded with PRP was utilized to form needle tips, while rhCol III-MA formed the base part of the patch. RhCol III-PRP<sup>M</sup> featured adequate mechanical qualities, swelling capacity, and sustained <i>in vitro</i> release of growth factors from the activation of PRP for over 7 days. Leveraging the synergistic effects of rhCol III and PRP, rhCol III-PRP<sup>M</sup> patches facilitated cell proliferation, migration, and angiogenesis, and reduced oxidative stress. In animal experiments, this microneedle patch effectively promoted the healing of diabetic wounds during a 20-day treatment, partially due to upregulating integrins and phosphorylated ERK protein levels. Diverging from other microneedle strategies, the rhCol III exhibited \"dual functionality,\" serving as both the microneedle patch matrix and therapeutic agent, promoting wound healing upon patch dissolution while delivering PRP. The combination of rhCol III and PRP in the form of a microneedle patch offered a straightforward and efficacious way for effective diabetic wound management, and showed promise in bringing new possibilities in clinical practice.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant human collagen microneedle patches loaded with PRP for diabetic wound treatment.\",\"authors\":\"Xinyue Wang, Xinyue Zhang, Yihan Zhao, Xue Zhan, Chen Hu, Haihang Li, Xiaoju Fan, Jie Liang, Yafang Chen, Yujiang Fan\",\"doi\":\"10.1039/d5tb00836k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic nonhealing wounds represent significant complications of diabetes, bearing a substantial burden and posing risks of disability or mortality. In diabetic wounds, continuous tissue fluid exudation, inflammatory cell migration, fibrosis, and bacterial biofilm formation create a \\\"barrier\\\", which decreases the treating efficacy of therapeutics. To address these limitations, a recombinant human collagen type III microneedle patch (rhCol III-PRP<sup>M</sup>) loaded with platelet-rich plasma (PRP) was developed, in which methacrylated rhCol III (rhCol III-MA) loaded with PRP was utilized to form needle tips, while rhCol III-MA formed the base part of the patch. RhCol III-PRP<sup>M</sup> featured adequate mechanical qualities, swelling capacity, and sustained <i>in vitro</i> release of growth factors from the activation of PRP for over 7 days. Leveraging the synergistic effects of rhCol III and PRP, rhCol III-PRP<sup>M</sup> patches facilitated cell proliferation, migration, and angiogenesis, and reduced oxidative stress. In animal experiments, this microneedle patch effectively promoted the healing of diabetic wounds during a 20-day treatment, partially due to upregulating integrins and phosphorylated ERK protein levels. Diverging from other microneedle strategies, the rhCol III exhibited \\\"dual functionality,\\\" serving as both the microneedle patch matrix and therapeutic agent, promoting wound healing upon patch dissolution while delivering PRP. The combination of rhCol III and PRP in the form of a microneedle patch offered a straightforward and efficacious way for effective diabetic wound management, and showed promise in bringing new possibilities in clinical practice.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00836k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00836k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性不愈合伤口是糖尿病的重要并发症,负担沉重,有致残或死亡风险。在糖尿病伤口中,持续的组织液渗出、炎症细胞迁移、纤维化和细菌生物膜形成“屏障”,降低了治疗药物的治疗效果。为了解决这些局限性,我们开发了一种装载富血小板血浆(PRP)的重组人胶原III型微针贴片(rhCol III- prpm),其中装载PRP的甲基丙烯酸化rhCol III (rhCol III- ma)形成针尖,而rhCol III- ma形成贴片的基础部分。RhCol III-PRPM具有足够的机械性能,肿胀能力,并且PRP激活后生长因子的体外释放持续超过7天。利用rhCol III和PRP的协同作用,rhCol III- prpm贴片促进细胞增殖、迁移和血管生成,并减少氧化应激。在动物实验中,这种微针贴片在20天的治疗期间有效地促进了糖尿病伤口的愈合,部分原因是上调了整合素和磷酸化的ERK蛋白水平。与其他微针策略不同,rhCol III表现出“双重功能”,既作为微针贴片基质,又作为治疗剂,在贴片溶解时促进伤口愈合,同时递送PRP。rcol III和PRP以微针贴片的形式联合应用,为糖尿病创面的有效管理提供了一种简单有效的方法,有望为临床实践带来新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recombinant human collagen microneedle patches loaded with PRP for diabetic wound treatment.

Chronic nonhealing wounds represent significant complications of diabetes, bearing a substantial burden and posing risks of disability or mortality. In diabetic wounds, continuous tissue fluid exudation, inflammatory cell migration, fibrosis, and bacterial biofilm formation create a "barrier", which decreases the treating efficacy of therapeutics. To address these limitations, a recombinant human collagen type III microneedle patch (rhCol III-PRPM) loaded with platelet-rich plasma (PRP) was developed, in which methacrylated rhCol III (rhCol III-MA) loaded with PRP was utilized to form needle tips, while rhCol III-MA formed the base part of the patch. RhCol III-PRPM featured adequate mechanical qualities, swelling capacity, and sustained in vitro release of growth factors from the activation of PRP for over 7 days. Leveraging the synergistic effects of rhCol III and PRP, rhCol III-PRPM patches facilitated cell proliferation, migration, and angiogenesis, and reduced oxidative stress. In animal experiments, this microneedle patch effectively promoted the healing of diabetic wounds during a 20-day treatment, partially due to upregulating integrins and phosphorylated ERK protein levels. Diverging from other microneedle strategies, the rhCol III exhibited "dual functionality," serving as both the microneedle patch matrix and therapeutic agent, promoting wound healing upon patch dissolution while delivering PRP. The combination of rhCol III and PRP in the form of a microneedle patch offered a straightforward and efficacious way for effective diabetic wound management, and showed promise in bringing new possibilities in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信