Triggered by light and magnetism: smart foam PLLA/HAP/Fe3O4 scaffolds for heat-controlled biomedical applications.

IF 5.7
Emilia Zachanowicz, Anna Tomaszewska, Magdalena Kulpa-Greszta, Piotr Krzemiński, Jean-Marie Nedelec, Dominika Zákutná, Štefan Hricov, Aleksandra Nurzyńska, Anna Belcarz-Romaniuk, Robert Pązik
{"title":"Triggered by light and magnetism: smart foam PLLA/HAP/Fe<sub>3</sub>O<sub>4</sub> scaffolds for heat-controlled biomedical applications.","authors":"Emilia Zachanowicz, Anna Tomaszewska, Magdalena Kulpa-Greszta, Piotr Krzemiński, Jean-Marie Nedelec, Dominika Zákutná, Štefan Hricov, Aleksandra Nurzyńska, Anna Belcarz-Romaniuk, Robert Pązik","doi":"10.1039/d5tb00998g","DOIUrl":null,"url":null,"abstract":"<p><p>Ternary composite foam materials containing poly-L-lactic acid (PLLA), calcium hydroxyapatite (HAP) (20 nm), and morphologically controlled Fe<sub>3</sub>O<sub>4</sub> nanoparticles (80 nm) were fabricated using the thermally induced phase separation (TIPS) technique over a broad concentration range of the magnetic component (1-30 wt%). The foam scaffolds were highly porous (>95%), and lightweight, with a high capacity for soaking in Ringer's solution. The foam density varied with the inorganic component content, ranging from 0.02 to 0.079 g mL<sup>-1</sup>, while the mean pore size was approximately 330 μm. The magnetic behavior of Fe<sub>3</sub>O<sub>4</sub> nanocubes and the foam composites was characterized. The presence of the inorganic filler caused a shift towards a lower decomposition temperature of PLLA. The conversion energy of both dry and Ringer's solution soaked foams was studied in detail demonstrating that the fabricated ternary composites are highly temperature-responsive under the influence of an alternating magnetic field (AMF), near-infrared (NIR) laser radiation (808, 880, and 1122 nm), and the synergistic effect of both external stimuli. This synergy resulted in faster heating and a higher maximum temperature (<i>T</i><sub>max</sub> ≈ 80 °C). Biological characterization and heating ability analysis enabled the selection of the most reliable foam, which contained 15% magnetic filler, based on its appropriate microstructure, sufficient biocompatibility, and ability to reach biologically relevant temperatures under AMF exposure and the combined action of NIR and AMF. The fabricated materials exhibit high potential for biomedical applications as well as other areas requiring temperature-controlled stimulation of various processes.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9465-9485"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00998g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary composite foam materials containing poly-L-lactic acid (PLLA), calcium hydroxyapatite (HAP) (20 nm), and morphologically controlled Fe3O4 nanoparticles (80 nm) were fabricated using the thermally induced phase separation (TIPS) technique over a broad concentration range of the magnetic component (1-30 wt%). The foam scaffolds were highly porous (>95%), and lightweight, with a high capacity for soaking in Ringer's solution. The foam density varied with the inorganic component content, ranging from 0.02 to 0.079 g mL-1, while the mean pore size was approximately 330 μm. The magnetic behavior of Fe3O4 nanocubes and the foam composites was characterized. The presence of the inorganic filler caused a shift towards a lower decomposition temperature of PLLA. The conversion energy of both dry and Ringer's solution soaked foams was studied in detail demonstrating that the fabricated ternary composites are highly temperature-responsive under the influence of an alternating magnetic field (AMF), near-infrared (NIR) laser radiation (808, 880, and 1122 nm), and the synergistic effect of both external stimuli. This synergy resulted in faster heating and a higher maximum temperature (Tmax ≈ 80 °C). Biological characterization and heating ability analysis enabled the selection of the most reliable foam, which contained 15% magnetic filler, based on its appropriate microstructure, sufficient biocompatibility, and ability to reach biologically relevant temperatures under AMF exposure and the combined action of NIR and AMF. The fabricated materials exhibit high potential for biomedical applications as well as other areas requiring temperature-controlled stimulation of various processes.

由光和磁触发:用于热控生物医学应用的智能泡沫PLLA/HAP/Fe3O4支架。
采用热诱导相分离(TIPS)技术,在较宽的磁性组分浓度范围内(1-30 wt%)制备了含有聚l -乳酸(PLLA)、羟基磷灰石钙(HAP) (20 nm)和形貌可控的Fe3O4纳米颗粒(80 nm)的三元复合泡沫材料。泡沫支架具有高多孔性(>95%),重量轻,在林格氏溶液中浸泡能力强。泡沫密度随无机组分含量的变化而变化,范围为0.02 ~ 0.079 g mL-1,平均孔径约为330 μm。研究了Fe3O4纳米立方和泡沫复合材料的磁性行为。无机填料的存在导致PLLA的分解温度向较低的方向转变。研究了干燥泡沫和林格氏溶液浸泡泡沫的转换能,结果表明制备的三元复合材料在交变磁场(AMF)、近红外(NIR)激光辐射(808、880和1122 nm)以及两种外部刺激的协同作用下具有很高的温度响应性。这种协同作用导致更快的加热和更高的最高温度(Tmax≈80°C)。生物表征和加热能力分析使得选择最可靠的泡沫(含15%磁性填料),基于其适当的微观结构,足够的生物相容性,以及在AMF暴露和近红外和AMF共同作用下达到生物学相关温度的能力。制备的材料在生物医学应用以及其他需要温度控制刺激各种过程的领域显示出很高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信