重组透明质酸自愈注射水凝胶用于软骨组织工程:分子量影响的案例研究。

Manoj Kumar Sundaram, Chelladurai Karthikeyan Balavigneswaran, Iniyan Saravanakumar, Guhan Jayaraman, Vignesh Muthuvijayan
{"title":"重组透明质酸自愈注射水凝胶用于软骨组织工程:分子量影响的案例研究。","authors":"Manoj Kumar Sundaram, Chelladurai Karthikeyan Balavigneswaran, Iniyan Saravanakumar, Guhan Jayaraman, Vignesh Muthuvijayan","doi":"10.1039/d5tb00248f","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered <i>Lactococcus lactis</i>. Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH<sub>1.0</sub>) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH<sub>1.0</sub> hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH<sub>1.0</sub> hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. <i>In vitro</i> studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH<sub>1.0</sub> hydrogel will open promising avenues for advancing cartilage regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant hyaluronic acid-incorporated self-healing injectable hydrogels for cartilage tissue engineering: a case study on effects of molecular weight.\",\"authors\":\"Manoj Kumar Sundaram, Chelladurai Karthikeyan Balavigneswaran, Iniyan Saravanakumar, Guhan Jayaraman, Vignesh Muthuvijayan\",\"doi\":\"10.1039/d5tb00248f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered <i>Lactococcus lactis</i>. Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH<sub>1.0</sub>) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH<sub>1.0</sub> hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH<sub>1.0</sub> hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. <i>In vitro</i> studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH<sub>1.0</sub> hydrogel will open promising avenues for advancing cartilage regeneration.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00248f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00248f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软骨损伤是一个重大的临床挑战,需要创新的修复策略。自愈注射水凝胶正在成为软骨再生的有前途的解决方案。然而,具有强大机械强度的水凝胶模拟天然软骨和适当的细胞外基质的生产尚未实现。为了解决这一挑战,我们将氧化海藻酸盐(OA)和明胶(G)与代谢工程乳酸乳球菌衍生的不同分子量(0.5 MDa, 1.0 MDa和2.0 MDa)的重组透明质酸(HA)结合,制备了自愈注射水凝胶。加入透明质酸可以改善其物理化学、机械和生物性能。由于水凝胶网络中动态共价和非共价相互作用的平衡,1.0 MDa ha掺入水凝胶(OAGH1.0)表现出优异的可注射性和自愈效率。OAGH1.0水凝胶增强的剪切减薄特性有助于使用3D打印机将水凝胶打印成网状结构。OAGH1.0水凝胶的极限强度为1.2 MPa,与天然软骨相当。体外研究证实,这些水凝胶还能促进细胞粘附、增殖和胶原沉积。这些结果表明,在OAGH1.0水凝胶中实现的动态共价和非共价相互作用之间的平衡将为推进软骨再生开辟有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recombinant hyaluronic acid-incorporated self-healing injectable hydrogels for cartilage tissue engineering: a case study on effects of molecular weight.

Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered Lactococcus lactis. Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH1.0) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH1.0 hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH1.0 hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. In vitro studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH1.0 hydrogel will open promising avenues for advancing cartilage regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信