Carlos Alarcón-Fernández, Carlos Zaldo, Manuel Bañobre-López, Juan Gallo, Pedro Ramos-Cabrer, Sandra Plaza-García, Gonzalo Villaverde, Alejandro Ruperti, Concepción Cascales
{"title":"Biocompatible NaLn(WO<sub>4</sub>)<sub>2</sub> core-shell nanoplatelets for multimodal MRI contrast, NIR imaging, and high sensitivity infrared luminescent ratiometric thermometry.","authors":"Carlos Alarcón-Fernández, Carlos Zaldo, Manuel Bañobre-López, Juan Gallo, Pedro Ramos-Cabrer, Sandra Plaza-García, Gonzalo Villaverde, Alejandro Ruperti, Concepción Cascales","doi":"10.1039/d5tb00548e","DOIUrl":null,"url":null,"abstract":"<p><p>Multifunctional nanoprobes combining magnetic resonance imaging (MRI) contrast as well as near infrared (NIR) imaging and thermometry are demonstrated by using quasi-bidimensional core-multishell nanostructures based on the scheelite-like NaLn(WO<sub>4</sub>)<sub>2</sub> host (Ln = trivalent lanthanide). These nanostructures are composed of a NaHo(WO<sub>4</sub>)<sub>2</sub> core, plus a first shell of Tm,Yb:NaGd(WO<sub>4</sub>)<sub>2</sub>, and a second shell of Nd,Yb:NaGd(WO<sub>4</sub>)<sub>2</sub>. Proton nuclear magnetic relaxation dispersion studies and MRI of water dispersions of nanoprobes, whose quasi-bidimensional geometries promote the interaction of Gd<sup>3+</sup> with water protons, reveal behaviors evolving from a <i>T</i><sub>1</sub>-weighted MR contrast agent (CA) at 1.5 T to a highly effective <i>T</i><sub>2</sub>-weighted MR CA at ultrahigh magnetic fields of 7 T and above, and even a dual <i>T</i><sub>1</sub>/<i>T</i><sub>2</sub>-weighted CA at a clinical 3 T magnetic field. By NIR excitation (<i>λ</i><sub>EXC</sub> ∼ 803 nm) of Nd<sup>3+</sup>, luminescence-based thermometry was accomplished at wavelengths within the second biological transparency window (II-BW) through ratiometric analysis of <sup>4</sup>F<sub>3/2</sub> → <sup>4</sup>I<sub>11/2</sub> Nd<sup>3+</sup> (<i>λ</i> = 1058 nm) and <sup>2</sup>F<sub>5/2</sub> → <sup>2</sup>F<sub>7/2</sub> Yb<sup>3+</sup> (<i>λ</i> = 996 nm) emissions. Under a biologically safe excitation of 0.68 W cm<sup>-2</sup>, a chemically stable 2 mg mL<sup>-1</sup> nanoprobe water dispersion presents absolute, <i>S</i><sub>A</sub>, and relative, <i>S</i><sub>R</sub>, thermal sensitivities as remarkable as <i>S</i><sub>A</sub> = 480 × 10<sup>-4</sup> K<sup>-1</sup>, and <i>S</i><sub>R</sub> = 0.89% K<sup>-1</sup> at 40 °C (313 K), and temperature resolution <i>δ</i> ≈ 0.1 K. Moreover, through efficient Nd<sup>3+</sup> → Yb<sup>3+</sup> → Tm<sup>3+</sup> and Nd<sup>3+</sup> → Yb<sup>3+</sup> → Ho<sup>3+</sup> energy transfers, NIR photoluminescence from Tm<sup>3+</sup> at ∼1800 nm and Ho<sup>3+</sup> at ∼2000 nm facilitates in depth imaging. The low nanoprobe cytotoxicity allows NIR biolabeling during cellular temperature measurement.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9642-9665"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00548e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional nanoprobes combining magnetic resonance imaging (MRI) contrast as well as near infrared (NIR) imaging and thermometry are demonstrated by using quasi-bidimensional core-multishell nanostructures based on the scheelite-like NaLn(WO4)2 host (Ln = trivalent lanthanide). These nanostructures are composed of a NaHo(WO4)2 core, plus a first shell of Tm,Yb:NaGd(WO4)2, and a second shell of Nd,Yb:NaGd(WO4)2. Proton nuclear magnetic relaxation dispersion studies and MRI of water dispersions of nanoprobes, whose quasi-bidimensional geometries promote the interaction of Gd3+ with water protons, reveal behaviors evolving from a T1-weighted MR contrast agent (CA) at 1.5 T to a highly effective T2-weighted MR CA at ultrahigh magnetic fields of 7 T and above, and even a dual T1/T2-weighted CA at a clinical 3 T magnetic field. By NIR excitation (λEXC ∼ 803 nm) of Nd3+, luminescence-based thermometry was accomplished at wavelengths within the second biological transparency window (II-BW) through ratiometric analysis of 4F3/2 → 4I11/2 Nd3+ (λ = 1058 nm) and 2F5/2 → 2F7/2 Yb3+ (λ = 996 nm) emissions. Under a biologically safe excitation of 0.68 W cm-2, a chemically stable 2 mg mL-1 nanoprobe water dispersion presents absolute, SA, and relative, SR, thermal sensitivities as remarkable as SA = 480 × 10-4 K-1, and SR = 0.89% K-1 at 40 °C (313 K), and temperature resolution δ ≈ 0.1 K. Moreover, through efficient Nd3+ → Yb3+ → Tm3+ and Nd3+ → Yb3+ → Ho3+ energy transfers, NIR photoluminescence from Tm3+ at ∼1800 nm and Ho3+ at ∼2000 nm facilitates in depth imaging. The low nanoprobe cytotoxicity allows NIR biolabeling during cellular temperature measurement.