ph响应双金属MOF纳米颗粒使增强放疗的三重协同放射增敏。

IF 5.7
Qijun Du, Guohua Wu, Ao Xie, Di Wu, Wenqi Hu, Qinrui Lu, Jie Liu, Jiashu Wang, Youlong Yang, Bangchuan Hu, Haijie Hu, Shuqi Wang
{"title":"ph响应双金属MOF纳米颗粒使增强放疗的三重协同放射增敏。","authors":"Qijun Du, Guohua Wu, Ao Xie, Di Wu, Wenqi Hu, Qinrui Lu, Jie Liu, Jiashu Wang, Youlong Yang, Bangchuan Hu, Haijie Hu, Shuqi Wang","doi":"10.1039/d5tb00926j","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy (RT) faces hypoxia-induced radioresistance, as oxygen-deficient tumor regions limit reactive oxygen species (ROS) generation. Current hypoxia-targeting strategies (<i>e.g.</i>, prodrugs, nanocarriers) struggle with inefficient delivery, off-target effects, and clinical translation barriers, necessitating advanced oxygenation or hypoxia-specific radiosensitization approaches. Herein, we developed pH-responsive BM-DOX@BSA nanoparticles (NPs) using a solvothermal method. Bi(NO<sub>3</sub>)<sub>3</sub>, MnCl<sub>2</sub>, and TCPP were used as precursors, with DOX loaded for chemotherapy. BSA was added to enhance biocompatibility. <i>In vitro</i> and <i>in vivo</i> experiments assessed ROS generation, drug release, cytotoxicity, and tumor suppression efficacy under X-ray irradiation. BM-DOX@BSA NPs exhibited pH-responsive degradation, releasing DOX more rapidly in acidic conditions. They markedly increased the generation of ROS under X-ray irradiation, resulting in enhanced apoptosis of tumor cells and DNA damage. This effectively improved the efficacy of radiation dynamic therapy (RDT). <i>In vivo</i>, the NPs combined with RT achieved 100% tumor suppression in HepG2 tumor-bearing mice, demonstrating excellent biocompatibility and therapeutic efficacy.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9418-9429"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Responsive bimetallic MOF nanoparticles enable triple-synergistic radiosensitization for enhanced radiotherapy.\",\"authors\":\"Qijun Du, Guohua Wu, Ao Xie, Di Wu, Wenqi Hu, Qinrui Lu, Jie Liu, Jiashu Wang, Youlong Yang, Bangchuan Hu, Haijie Hu, Shuqi Wang\",\"doi\":\"10.1039/d5tb00926j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy (RT) faces hypoxia-induced radioresistance, as oxygen-deficient tumor regions limit reactive oxygen species (ROS) generation. Current hypoxia-targeting strategies (<i>e.g.</i>, prodrugs, nanocarriers) struggle with inefficient delivery, off-target effects, and clinical translation barriers, necessitating advanced oxygenation or hypoxia-specific radiosensitization approaches. Herein, we developed pH-responsive BM-DOX@BSA nanoparticles (NPs) using a solvothermal method. Bi(NO<sub>3</sub>)<sub>3</sub>, MnCl<sub>2</sub>, and TCPP were used as precursors, with DOX loaded for chemotherapy. BSA was added to enhance biocompatibility. <i>In vitro</i> and <i>in vivo</i> experiments assessed ROS generation, drug release, cytotoxicity, and tumor suppression efficacy under X-ray irradiation. BM-DOX@BSA NPs exhibited pH-responsive degradation, releasing DOX more rapidly in acidic conditions. They markedly increased the generation of ROS under X-ray irradiation, resulting in enhanced apoptosis of tumor cells and DNA damage. This effectively improved the efficacy of radiation dynamic therapy (RDT). <i>In vivo</i>, the NPs combined with RT achieved 100% tumor suppression in HepG2 tumor-bearing mice, demonstrating excellent biocompatibility and therapeutic efficacy.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"9418-9429\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00926j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00926j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗(RT)面临缺氧诱导的放射抵抗,因为缺氧的肿瘤区域限制了活性氧(ROS)的产生。目前的低氧靶向策略(如前药、纳米载体)存在递送效率低、脱靶效应和临床翻译障碍等问题,因此需要先进的氧合或低氧特异性放射增敏方法。在这里,我们使用溶剂热方法开发了ph响应BM-DOX@BSA纳米颗粒(NPs)。以Bi(NO3)3、MnCl2和TCPP为前体,负载DOX进行化疗。添加BSA以增强生物相容性。体外和体内实验评估了x射线照射下ROS的生成、药物释放、细胞毒性和肿瘤抑制效果。BM-DOX@BSA NPs表现出ph响应性降解,在酸性条件下更快地释放DOX。它们显著增加x射线照射下ROS的生成,导致肿瘤细胞凋亡和DNA损伤增强。这有效地提高了放射动态治疗(RDT)的疗效。在体内,NPs联合RT在HepG2荷瘤小鼠中达到100%的抑瘤效果,表现出良好的生物相容性和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pH-Responsive bimetallic MOF nanoparticles enable triple-synergistic radiosensitization for enhanced radiotherapy.

Radiotherapy (RT) faces hypoxia-induced radioresistance, as oxygen-deficient tumor regions limit reactive oxygen species (ROS) generation. Current hypoxia-targeting strategies (e.g., prodrugs, nanocarriers) struggle with inefficient delivery, off-target effects, and clinical translation barriers, necessitating advanced oxygenation or hypoxia-specific radiosensitization approaches. Herein, we developed pH-responsive BM-DOX@BSA nanoparticles (NPs) using a solvothermal method. Bi(NO3)3, MnCl2, and TCPP were used as precursors, with DOX loaded for chemotherapy. BSA was added to enhance biocompatibility. In vitro and in vivo experiments assessed ROS generation, drug release, cytotoxicity, and tumor suppression efficacy under X-ray irradiation. BM-DOX@BSA NPs exhibited pH-responsive degradation, releasing DOX more rapidly in acidic conditions. They markedly increased the generation of ROS under X-ray irradiation, resulting in enhanced apoptosis of tumor cells and DNA damage. This effectively improved the efficacy of radiation dynamic therapy (RDT). In vivo, the NPs combined with RT achieved 100% tumor suppression in HepG2 tumor-bearing mice, demonstrating excellent biocompatibility and therapeutic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信