{"title":"Future applications of self-immolative polymers in drug delivery.","authors":"Elizabeth R Gillies","doi":"10.1080/17425247.2025.2493228","DOIUrl":"10.1080/17425247.2025.2493228","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"909-914"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144028347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of bacteria-mediated gene therapy in tumor treatment.","authors":"Renjie Feng, Meng Du, Zhiyi Chen","doi":"10.1080/17425247.2025.2502638","DOIUrl":"10.1080/17425247.2025.2502638","url":null,"abstract":"<p><strong>Introduction: </strong>Gene therapy refers to the use of vectors to introduce target genes into target cells to exert a therapeutic effect on tumors. As a new type of tumor therapy, gene therapy has the advantage of precision and specificity. Excellent delivery vehicles have a major impact on the efficiency, precision and safety of gene therapy. Unlike traditional vectors, bacteria based on prokaryotes have the advantages of good targeting, large load, and simplicity. In addition, different types of bacteria also have characteristics that can be used in various scenarios.</p><p><strong>Areas covered: </strong>In this review, we searched the gene therapy-related literature in PubMed, mainly in the last five years, and compared the characteristics of different gene vectors, focusing on the bacterial gene therapy and aiming to explore excellent bacterial gene therapy programs.</p><p><strong>Expert opinion: </strong>Compared with traditional tumor gene therapy vectors, bacteria have many advantages, such as good targeting, large carrying capacity, and simple production. Meanwhile, the combination of artificial intelligence technology, bacterial imaging probe technology and suicide genes will be expected to control the bacterial therapy process, improve the safety of treatment, and promote the translational application of bacterial gene therapy.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"993-1006"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masheera Akhtar, Nida Nehal, Azka Gull, Rabea Parveen, Sana Khan, Saba Khan, Javed Ali
{"title":"Explicating the transformative role of artificial intelligence in designing targeted nanomedicine.","authors":"Masheera Akhtar, Nida Nehal, Azka Gull, Rabea Parveen, Sana Khan, Saba Khan, Javed Ali","doi":"10.1080/17425247.2025.2502022","DOIUrl":"10.1080/17425247.2025.2502022","url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI) has emerged as a transformative force in nanomedicine, revolutionizing drug delivery, diagnostics, and personalized treatment. While nanomedicine offers precise targeted drug delivery and reduced toxic effects, its clinical translation is hindered by biological complexity, unpredictable in vivo behavior, and inefficient trial-and-error approaches.</p><p><strong>Areas covered: </strong>This review covers the application of AI and Machine Learning (ML) across the nanomedicine development pipeline, starting from drug and target identification to nanoparticle design, toxicity prediction, and personalized dosing. Different AI/ML models like QSAR, MTK-QSBER, and Alchemite, along with data sources and high-throughput screening methods, have been explored. Real-world applications are critically discussed, including AI-assisted drug repurposing, controlled-release formulations, and cancer-specific delivery systems.</p><p><strong>Expert opinion: </strong>AI has emerged as an essential component in designing next-generation nanomedicine. Efficiently handling multidimensional datasets, optimizing formulations, and personalizing treatment regimens, it has sped up the innovation process. However, challenges like data heterogeneity, model transparency, and regulatory gaps remain. Addressing these hurdles through interdisciplinary efforts and emerging innovations like explainable AI and federated learning will pave the way for the clinical translation of AI-driven nanomedicine.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"971-991"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress and potential of nanobubbles for ultrasound-mediated drug delivery.","authors":"Laura E Chen, Pinunta Nittayacharn, Agata A Exner","doi":"10.1080/17425247.2025.2505044","DOIUrl":"10.1080/17425247.2025.2505044","url":null,"abstract":"<p><strong>Introduction: </strong>Despite much progress, nanomedicine-based drug therapies in oncology remain limited by systemic toxicity and insufficient particle accumulation in the tumor. To address these barriers, formulations responsive to external physical stimuli have emerged. One most promising system is the ultrasound stimulation of drug-loaded, gas-core particles (bubbles). Ultrasound induces bubble cavitation for cell and tissue permeabilization, triggers on-demand drug release, and provides opportunities for real-time imaging of delivery.</p><p><strong>Areas covered: </strong>Here, we focus on shell-stabilized, gas-core nanoparticles (also termed nanobubbles or ultrafine bubbles) and their role in ultrasound-mediated therapeutic delivery to tumors. This review frames the advantages of nanobubbles within the ongoing deficits in nanomedicine, describes mechanisms of ultrasound-mediated therapy, and details formulation techniques for nanobubble delivery systems. It then highlights the past decade of research in nanobubble-facilitated drug delivery for cancer therapy and anticipates new directions in the field.</p><p><strong>Expert opinion: </strong>Nanobubble ultrasound contrast agents offer a spatiotemporally triggerable therapeutic coupled with a safe, accessible imaging modality. Nanobubbles can be loaded with diverse therapeutic cargoes to treat disease and overcome numerous barriers limiting delivery to solid tumors. Close attention to formulation, characterization methods, acoustic testing parameters, and the biological mechanisms of nanobubble delivery will facilitate preclinical research toward clinical adoption.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1007-1030"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144059021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santosh Bhujbal, Ilva D Rupenthal, Vandana B Patravale, Priyanka Agarwal
{"title":"Transfersomes: a next-generation drug delivery system for topical ocular drug delivery.","authors":"Santosh Bhujbal, Ilva D Rupenthal, Vandana B Patravale, Priyanka Agarwal","doi":"10.1080/17425247.2025.2497829","DOIUrl":"10.1080/17425247.2025.2497829","url":null,"abstract":"<p><strong>Introduction: </strong>The eye is a complex organ with several anatomical and physiological barriers that make ocular drug delivery an ongoing challenge. Transfersomes (TFS) are deformable vesicles that have been extensively applied to enhance transdermal drug delivery. However, their application in ocular drug delivery remains largely unexplored.</p><p><strong>Areas covered: </strong>This review highlights the challenges typically associated with ocular drug delivery and emphasizes the inherent properties of TFS that enable them to overcome these challenges. The influence of excipients and critical process parameters on TFS characteristics have been discussed in detail with an emphasis on the fabrication and characterization techniques typically employed for TFS development and optimization. Furthermore, recent studies evaluating the application of TFS in ocular drug delivery have been discussed in depth.</p><p><strong>Expert opinion: </strong>The unique stress-responsive and deformable nature of TFS makes them promising carriers for ocular drug delivery. However, further research in this direction is needed to understand their penetration mechanism and elucidate their potential for sustained and targeted drug delivery to ocular tissues. Moreover, further research is needed to optimize the stability and scalability of TFS to encourage their translation to the market.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"935-956"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayi Yang, Xinyi Ai, Chenming Zhang, Teng Guo, Nianping Feng
{"title":"Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review.","authors":"Jiayi Yang, Xinyi Ai, Chenming Zhang, Teng Guo, Nianping Feng","doi":"10.1080/17425247.2025.2487589","DOIUrl":"10.1080/17425247.2025.2487589","url":null,"abstract":"<p><strong>Introduction: </strong>Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential.</p><p><strong>Areas covered: </strong>A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion.</p><p><strong>Expert opinion: </strong>Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"787-803"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idejan P Gross, Ana Luiza Lima, Livia L Sá-Barreto, Guilherme M Gelfuso, Marcilio Cunha-Filho
{"title":"Recent advances in cutaneous drug delivery by iontophoresis.","authors":"Idejan P Gross, Ana Luiza Lima, Livia L Sá-Barreto, Guilherme M Gelfuso, Marcilio Cunha-Filho","doi":"10.1080/17425247.2025.2490267","DOIUrl":"10.1080/17425247.2025.2490267","url":null,"abstract":"<p><strong>Introduction: </strong>Iontophoresis has been extensively studied for topical and transdermal drug delivery to stimulate the absorption of molecules that would hardly pass through the outermost layer of the skin passively. Recent research has focused on its combination with nanoparticle-based systems or microneedles to expand its therapeutic applications.</p><p><strong>Areas covered: </strong>This review explores the fundamental principles of iontophoresis, focusing on key factors influencing its drug transport mechanisms, and provides a discussion of the field's current state. A comprehensive analysis of articles published or available online in 2024 was conducted, categorizing studies by their application areas, drug delivery systems, iontophoretic conditions, and experimental limitations.</p><p><strong>Expert opinion: </strong>The findings reveal a recent focus on wound healing and skin repair, and advancements in treating inflammation, pain, and skin cancer. Market translation requires standardized experimental protocols, particularly for iontophoretic parameters and preclinical models, along with the development of cost-effective commercial devices. Additionally, while advancements in cutaneous drug delivery have increasingly benefited from machine learning approaches, their application to iontophoresis remains underexplored. With the growing interest in associating iontophoresis with the Internet of Things, such an integration, if combined with AI tools, could offer promising opportunities for personalized, real-time treatments in modern dermatology, and therapeutic systems.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"857-874"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanominerals: a multifaceted biomaterial for regenerative medicine and drug delivery.","authors":"Aishik Chakraborty, Wei Luo, Arghya Paul","doi":"10.1080/17425247.2025.2491642","DOIUrl":"10.1080/17425247.2025.2491642","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"763-768"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-acting injectables for the treatment of substance use disorder: a look ahead.","authors":"Sohyung Lee, Nitin Joshi","doi":"10.1080/17425247.2025.2493232","DOIUrl":"10.1080/17425247.2025.2493232","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"757-761"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redox chemical delivery system: an innovative strategy for the treatment of neurodegenerative diseases.","authors":"Jeevan Lal Prajapati, Yogita Dhurandhar, As Pee Singh, Deepak Kumar Gupta, Vivek Singh Baghel, Umesh Kushwaha, Kamta Prasad Namdeo","doi":"10.1080/17425247.2025.2489558","DOIUrl":"10.1080/17425247.2025.2489558","url":null,"abstract":"<p><strong>Introduction: </strong>It is anticipated that the prevalence of illnesses affecting the central nervous system (CNS) will rise significantly due to longer lifespans and changing demography. Age-related decline in brain function and neuronal death are features of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, which provide formidable treatment challenges. Because most therapeutic drugs cannot across the blood-brain barrier (BBB) to reach the brain, there are still few treatment alternatives available despite a great deal of research.</p><p><strong>Areas covered: </strong>This study explores the role of redox chemical delivery systems in CNS drug delivery and addresses challenges associated with neurodegenerative disease (ND). Redox Chemical Delivery System offers a promising approach to enhancing leveraging redox reactions that facilitate the transport of therapeutic agents across the BBB. Through the optimization of medication delivery pathways to the brain, this technology has the potential to greatly improve the treatment of ND.</p><p><strong>Expert opinion: </strong>As our understanding of the biological underpinnings of ND deepens, the potential for effective interventions increases. Refining drug delivery strategies, such as RCDS, is essential for advancing CNS therapies from research to clinical practice. These advancements could transform the management of ND, improving both treatment efficacy and patient outcomes.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"805-822"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}