Expert opinion on drug delivery最新文献

筛选
英文 中文
An investigation of nano- and micron-sized carriers based on calcium carbonate and polylactic acid for oral administration of siRNA. 基于碳酸钙和聚乳酸的纳米和微米级载体用于口服 siRNA 的研究。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-08-21 DOI: 10.1080/17425247.2024.2393244
Darya R Akhmetova, Anna Rogova, Yulia A Tishchenko, Ksenia A Mitusova, Alisa S Postovalova, Olesya V Dovbysh, Nina V Gavrilova, Olga S Epifanovskaya, Timofey A Pyatiizbyantsev, Alena I Shakirova, Alexandra V Brodskaia, Sergei A Shipilovskikh, Alexander S Timin
{"title":"An investigation of nano- and micron-sized carriers based on calcium carbonate and polylactic acid for oral administration of siRNA.","authors":"Darya R Akhmetova, Anna Rogova, Yulia A Tishchenko, Ksenia A Mitusova, Alisa S Postovalova, Olesya V Dovbysh, Nina V Gavrilova, Olga S Epifanovskaya, Timofey A Pyatiizbyantsev, Alena I Shakirova, Alexandra V Brodskaia, Sergei A Shipilovskikh, Alexander S Timin","doi":"10.1080/17425247.2024.2393244","DOIUrl":"10.1080/17425247.2024.2393244","url":null,"abstract":"<p><strong>Background: </strong>Oral delivery of small interfering RNAs (siRNAs) draws significant attention, but the gastrointestinal tract (GIT) has many biological barriers that limit the drugs' bioavailability. The aim of this work was to investigate the potential of micro- and nano-sized CaCO<sub>3</sub> and PLA carriers for oral delivery of siRNA and reveal a relationship between the physicochemical features of these carriers and their biodistribution.</p><p><strong>Research design and methods: </strong><i>In vitro</i> stability of carriers was investigated in simulated gastric and intestinal fluids. Toxicity and cellular uptake were investigated on Caco-2 cells. The biodistribution profiles of the developed CaCO<sub>3</sub> and PLA carriers were examined using different visualization methods, including SPECT, fluorescence imaging, radiometry, and histological analysis. The delivery efficiency of siRNA loaded carriers was investigated both <i>in</i> <i>vitro</i> and <i>in</i> <i>vivo</i>.</p><p><strong>Results: </strong>Micro-sized carriers were accumulated in the stomach and later localized in the colon tissues. The nanoscale particles (100-250 nm) were distributed in the colon tissues. nPLA was also detected in small intestine. The developed carriers can prevent siRNA from premature degradation in GIT media.</p><p><strong>Conclusion: </strong>Our results reveal how the physicochemical properties of the particles, including their size and material type can affect their biodistribution profile and oral delivery of siRNA.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1279-1295"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro modelling of intramuscular injection site events. 肌肉注射部位事件的体外建模。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-08-17 DOI: 10.1080/17425247.2024.2388841
Adam J S McCartan, Randall J Mrsny
{"title":"<i>In vitro</i> modelling of intramuscular injection site events.","authors":"Adam J S McCartan, Randall J Mrsny","doi":"10.1080/17425247.2024.2388841","DOIUrl":"10.1080/17425247.2024.2388841","url":null,"abstract":"<p><strong>Introduction: </strong>Intramuscular (IM) injections deliver a plethora of drugs. The majority of IM-related literature details dissolution and/or pharmacokinetic (PK) studies, using methods with limited assessments of post-injection events that can impact drug fate, and absorption parameters. Food and Drug Association guidelines no longer require preclinical <i>in vivo</i> modeling in the U.S.A. Preclinical animal models fail to correlate with clinical outcomes, highlighting the need to study, and understand, IM drug fate <i>in vitro</i> using bespoke models emulating human IM sites. Post-IM injection events, i.e. underlying processes that influence PK outcomes, remain unacknowledged, complicating the application of <i>in vitro</i> methods in preclinical drug development. Understanding such events could guide approaches to predict and modulate IM drug fate in humans.</p><p><strong>Areas covered: </strong>This article reviews challenges in biorelevant IM site modeling (i.e. modeling drug fate outcomes), the value of technologies available for developing IM injectables, methods for studying drug fate, and technologies for training in performing IM administrations. PubMed, Web-of-Science, and Lens databases provided papers published between 2014 and 2024.</p><p><strong>Expert opinion: </strong>IM drug research is expanding what injectable therapeutics can achieve. However, post-injection events that influence PK outcomes remain poorly understood. Until addressed, advances in IM drug development will not realize their full potential.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1155-1173"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of airway disease on the deposition of inhaled drugs. 气道疾病对吸入药物沉积的影响。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-08-19 DOI: 10.1080/17425247.2024.2392790
Chantal Darquenne, Timothy E Corcoran, Federico Lavorini, Alessandra Sorano, Omar S Usmani
{"title":"The effects of airway disease on the deposition of inhaled drugs.","authors":"Chantal Darquenne, Timothy E Corcoran, Federico Lavorini, Alessandra Sorano, Omar S Usmani","doi":"10.1080/17425247.2024.2392790","DOIUrl":"10.1080/17425247.2024.2392790","url":null,"abstract":"<p><strong>Introduction: </strong>The deposition of inhaled medications is the first step in the pulmonary pharmacokinetic process to produce a therapeutic response. Not only lung dose but more importantly the distribution of deposited drug in the different regions of the lung determines local bioavailability, efficacy, and clinical safety. Assessing aerosol deposition patterns has been the focus of intense research that combines the fields of physics, radiology, physiology, and biology.</p><p><strong>Areas covered: </strong>The review covers the physics of aerosol transport in the lung, experimental, and in-silico modeling approaches to determine lung dose and aerosol deposition patterns, the effect of asthma, chronic obstructive pulmonary disease, and cystic fibrosis on aerosol deposition, and the clinical translation potential of determining aerosol deposition dose.</p><p><strong>Expert opinion: </strong>Recent advances in in-silico modeling and lung imaging have enabled the development of realistic subject-specific aerosol deposition models, albeit mainly in health. Accurate modeling of lung disease still requires additional refinements in existing imaging and modeling approaches to better characterize disease heterogeneity in peripheral airways. Nevertheless, recent patient-centric innovation in inhaler device engineering and the incorporation of digital technology have led to more consistent lung deposition and improved targeting of the distal airways, which better serve the clinical needs of patients.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1175-1190"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer. 树枝状聚合物介导的血管生成生物标记物靶向:癌症治疗干预。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-09-04 DOI: 10.1080/17425247.2024.2394631
Anchal Pathak, Narendra Kumar Jain, Keerti Jain
{"title":"Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer.","authors":"Anchal Pathak, Narendra Kumar Jain, Keerti Jain","doi":"10.1080/17425247.2024.2394631","DOIUrl":"10.1080/17425247.2024.2394631","url":null,"abstract":"<p><strong>Introduction: </strong>Development of novel vascular networks is a fundamental requirement for tumor growth and progression. In the last decade, biomarkers and underlying molecular pathways of angiogenesis have been intensely investigated to disrupt the initiation and progression of tumor angiogenesis. However, the clinical applications of anti-angiogenic agents are constrained due to toxic side effects, acquired drug resistance, and unavailability of validated biomarkers.</p><p><strong>Area covered: </strong>This review discusses the development of dendrimeric nanocarriers that could be a promising domain to explore for the eradication of current challenges associated with angiogenesis-based cancer therapy. Novel drug-delivery approaches with subtle readouts and better understanding of molecular mechanisms have revealed that dendrimers comprise innate anti-angiogenic activity and incorporation of anti-angiogenic agents or gene-silencing RNA could lead to synergistic anti-angiogenic and anticancer effects with reduced side effects.</p><p><strong>Expert opinion: </strong>Dendrimer-mediated targeting of angiogenic biomarkers has efficiently led to the vascular normalization, and rational linking of dendrimers with anti-angiogenic agent or siRNA or both might be a potential area to eradicate the current challenges of angiogenesis-based cancer therapy. However, drawbacks associated with the dendrimers-mediated targeting of angiogenic biomarkers, such as poor stability or small expression of these biomarkers on the normal cells, limit their application at market scale.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1235-1250"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable nanoplatforms for antigen delivery: part I - state of the art review of polymeric nanoparticles for cancer immunotherapy. 用于抗原递送的生物可降解纳米平台:第一部分--用于癌症免疫疗法的聚合物纳米颗粒的最新进展回顾。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-09-08 DOI: 10.1080/17425247.2024.2400293
Estefanía Vega, Jordi Madariaga Burgos, Eliana B Souto, María Luisa García, Montserrat Pujol, Elena Sánchez-López
{"title":"Biodegradable nanoplatforms for antigen delivery: part I - state of the art review of polymeric nanoparticles for cancer immunotherapy.","authors":"Estefanía Vega, Jordi Madariaga Burgos, Eliana B Souto, María Luisa García, Montserrat Pujol, Elena Sánchez-López","doi":"10.1080/17425247.2024.2400293","DOIUrl":"10.1080/17425247.2024.2400293","url":null,"abstract":"<p><strong>Introduction: </strong>Polymeric nanoparticles used for antigen delivery against infections and for cancer immunotherapy are an emerging therapeutic strategy in promoting the development of innovative vaccines. Beyond their capability to create targeted delivery systems with controlled release of payloads, biodegradable polymers are utilized for their ability to enhance the immunogenicity and stability of antigens.</p><p><strong>Areas covered: </strong>This review extensively discusses the physicochemical parameters that affect the behavior of nanoparticles as antigen-delivery systems. Additionally, various types of natural and synthetic polymers and recent advancements in nanoparticle-based targeted vaccine production are reviewed.</p><p><strong>Expert opinion: </strong>Biodegradable polymeric nanoparticles have gained major interest in the vaccination filed and have been extensively used to encapsulate antigens against a wide variety of tumors. Moreover, their versatility in terms of tunning their physicochemical characteristics, and their surface, facilitates the targeting to antigen presenting cells and enhances immune response.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1251-1262"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treprostinil palmitil inhalation powder leverages endogenous lung enzymes to provide sustained treprostinil. Treprostinil palmitil 吸入粉利用内源性肺部酶提供持续的曲普瑞司替尼。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-09-12 DOI: 10.1080/17425247.2024.2395444
Tam Nguyen, Christina Chang, David Cipolla, Vladimir Malinin, Walter Perkins, Veronica Viramontes, Junguo Zhou, Michel Corboz
{"title":"Treprostinil palmitil inhalation powder leverages endogenous lung enzymes to provide sustained treprostinil.","authors":"Tam Nguyen, Christina Chang, David Cipolla, Vladimir Malinin, Walter Perkins, Veronica Viramontes, Junguo Zhou, Michel Corboz","doi":"10.1080/17425247.2024.2395444","DOIUrl":"10.1080/17425247.2024.2395444","url":null,"abstract":"<p><strong>Background: </strong>To determine key enzymes enabling treprostinil palmitil (TP) conversion to treprostinil and the main converting sites in the respiratory system.</p><p><strong>Research design and methods: </strong>We performed in vitro activity assays to identify lung enzymes hydrolyzing TP, and cell-based assays and immunostainings to establish the likely locations within the lung.</p><p><strong>Results: </strong>Lipoprotein lipase (LPL) had greater activity than the other tested lung enzymes. Excess LPL activity was present both in vitro and at the target TP dose in vivo.</p><p><strong>Conclusions: </strong>LPL is likely the key enzyme enabling TP conversion. The rate-limiting step is likely the accessibility of TP and not the enzyme activity.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1297-1305"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-based nanosystems for wound healing. 用于伤口愈合的脂基纳米系统。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-09-11 DOI: 10.1080/17425247.2024.2391473
Rita Cortesi, Maddalena Sguizzato, Francesca Ferrara
{"title":"Lipid-based nanosystems for wound healing.","authors":"Rita Cortesi, Maddalena Sguizzato, Francesca Ferrara","doi":"10.1080/17425247.2024.2391473","DOIUrl":"10.1080/17425247.2024.2391473","url":null,"abstract":"<p><strong>Introduction: </strong>Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery.</p><p><strong>Areas covered: </strong>Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue. The role of nanosystems in delivering mostly natural compounds on skin as well as the technological and engineering strategies to increase their efficiency in wound healing effect are reviewed. Finally, <i>in vitro, ex-vivo</i> and <i>in vivo</i> studies are reported.</p><p><strong>Expert opinion: </strong>LBN have shown promise in addressing the challenges of wound healing as they can improve the stability of drugs used in wound therapy, leading to higher efficacy and fewer adverse effects as compared to traditional formulations. LBNs being involved in the inflammatory and proliferation stages of the wound healing process, enable the modification of wound healing through multiple ways. In addition, the use of new technologies, including 3D bioprinting and photobiomodulation, may lead to potential breakthroughs in wound healing. This would provide clinicians with more potent forms of therapy for wound healing.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1191-1211"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges. 将胰高血糖素样肽-1 经鼻内输送到大脑以治疗肥胖症:机遇与挑战。
Expert opinion on drug delivery Pub Date : 2024-07-01 Epub Date: 2024-08-05 DOI: 10.1080/17425247.2024.2387110
Tanisha Tabassum Sayka Khan, Zara Sheikh, Simin Maleknia, Farshad Oveissi, Ali Fathi, Terence Abrams, Hui Xin Ong, Daniela Traini
{"title":"Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges.","authors":"Tanisha Tabassum Sayka Khan, Zara Sheikh, Simin Maleknia, Farshad Oveissi, Ali Fathi, Terence Abrams, Hui Xin Ong, Daniela Traini","doi":"10.1080/17425247.2024.2387110","DOIUrl":"10.1080/17425247.2024.2387110","url":null,"abstract":"<p><strong>Introduction: </strong>Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), approved by the US FDA for obesity treatment, are typically administered subcutaneously, an invasive method leading to suboptimal patient adherence and peripheral side effects. Additionally, this route requires the drug to cross the restrictive blood-brain barrier (BBB), limiting its safety and effectiveness in weight management and cognitive addiction disorders. Delivering the drug intranasally could overcome these drawbacks.</p><p><strong>Areas covered: </strong>This review summarizes GLP-1 RAs used as anti-obesity agents, focusing on the intranasal route as a potential pathway to deliver these biomolecules to the brain. It also discusses strategies to overcome challenges associated with nasal delivery.</p><p><strong>Expert opinion: </strong>Nose-to-brain (N2B) pathways can address limitations of the subcutaneous route for GLP-1 RAs. However, peptide delivery to the brain is challenging due to nasal physiological barriers and the drug's physicochemical properties. Innovative approaches, such as cell permeation enhancers, mucoadhesive systems, and nanocarriers in nasal formulations, along with efficient drug delivery devices, show promising preclinical results. Despite this, successful preclinical data does not guarantee clinical effectiveness, highlighting the need for comprehensive clinical investigations to optimize formulations and fully utilize the nose-to-brain interface for peptide delivery.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1081-1101"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational hurdles in anti-asthmatic nanomedicine development. 抗哮喘纳米药物开发中的转化障碍。
Expert opinion on drug delivery Pub Date : 2024-07-01 Epub Date: 2024-07-28 DOI: 10.1080/17425247.2024.2385092
Muhammad Waseem Akram, Tin Wui Wong
{"title":"Translational hurdles in anti-asthmatic nanomedicine development.","authors":"Muhammad Waseem Akram, Tin Wui Wong","doi":"10.1080/17425247.2024.2385092","DOIUrl":"10.1080/17425247.2024.2385092","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"987-989"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. 模拟女性生殖道的体外模型在提高阴道内给药效率方面的最新进展。
Expert opinion on drug delivery Pub Date : 2024-07-01 Epub Date: 2024-07-22 DOI: 10.1080/17425247.2024.2380338
Bruna Silva, Eduardo F Marques, Andreia C Gomes
{"title":"Recent advances in <i>in vitro</i> models simulating the female genital tract toward more effective intravaginal therapeutic delivery.","authors":"Bruna Silva, Eduardo F Marques, Andreia C Gomes","doi":"10.1080/17425247.2024.2380338","DOIUrl":"10.1080/17425247.2024.2380338","url":null,"abstract":"<p><strong>Introduction: </strong>Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response.</p><p><strong>Areas covered: </strong>In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction.</p><p><strong>Expert opinion: </strong>Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1007-1027"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信