Masheera Akhtar, Nida Nehal, Azka Gull, Rabea Parveen, Sana Khan, Saba Khan, Javed Ali
{"title":"阐述人工智能在设计靶向纳米药物中的变革作用。","authors":"Masheera Akhtar, Nida Nehal, Azka Gull, Rabea Parveen, Sana Khan, Saba Khan, Javed Ali","doi":"10.1080/17425247.2025.2502022","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI) has emerged as a transformative force in nanomedicine, revolutionizing drug delivery, diagnostics, and personalized treatment. While nanomedicine offers precise targeted drug delivery and reduced toxic effects, its clinical translation is hindered by biological complexity, unpredictable in vivo behavior, and inefficient trial-and-error approaches.</p><p><strong>Areas covered: </strong>This review covers the application of AI and Machine Learning (ML) across the nanomedicine development pipeline, starting from drug and target identification to nanoparticle design, toxicity prediction, and personalized dosing. Different AI/ML models like QSAR, MTK-QSBER, and Alchemite, along with data sources and high-throughput screening methods, have been explored. Real-world applications are critically discussed, including AI-assisted drug repurposing, controlled-release formulations, and cancer-specific delivery systems.</p><p><strong>Expert opinion: </strong>AI has emerged as an essential component in designing next-generation nanomedicine. Efficiently handling multidimensional datasets, optimizing formulations, and personalizing treatment regimens, it has sped up the innovation process. However, challenges like data heterogeneity, model transparency, and regulatory gaps remain. Addressing these hurdles through interdisciplinary efforts and emerging innovations like explainable AI and federated learning will pave the way for the clinical translation of AI-driven nanomedicine.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicating the transformative role of artificial intelligence in designing targeted nanomedicine.\",\"authors\":\"Masheera Akhtar, Nida Nehal, Azka Gull, Rabea Parveen, Sana Khan, Saba Khan, Javed Ali\",\"doi\":\"10.1080/17425247.2025.2502022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Artificial intelligence (AI) has emerged as a transformative force in nanomedicine, revolutionizing drug delivery, diagnostics, and personalized treatment. While nanomedicine offers precise targeted drug delivery and reduced toxic effects, its clinical translation is hindered by biological complexity, unpredictable in vivo behavior, and inefficient trial-and-error approaches.</p><p><strong>Areas covered: </strong>This review covers the application of AI and Machine Learning (ML) across the nanomedicine development pipeline, starting from drug and target identification to nanoparticle design, toxicity prediction, and personalized dosing. Different AI/ML models like QSAR, MTK-QSBER, and Alchemite, along with data sources and high-throughput screening methods, have been explored. Real-world applications are critically discussed, including AI-assisted drug repurposing, controlled-release formulations, and cancer-specific delivery systems.</p><p><strong>Expert opinion: </strong>AI has emerged as an essential component in designing next-generation nanomedicine. Efficiently handling multidimensional datasets, optimizing formulations, and personalizing treatment regimens, it has sped up the innovation process. However, challenges like data heterogeneity, model transparency, and regulatory gaps remain. Addressing these hurdles through interdisciplinary efforts and emerging innovations like explainable AI and federated learning will pave the way for the clinical translation of AI-driven nanomedicine.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2502022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2502022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explicating the transformative role of artificial intelligence in designing targeted nanomedicine.
Introduction: Artificial intelligence (AI) has emerged as a transformative force in nanomedicine, revolutionizing drug delivery, diagnostics, and personalized treatment. While nanomedicine offers precise targeted drug delivery and reduced toxic effects, its clinical translation is hindered by biological complexity, unpredictable in vivo behavior, and inefficient trial-and-error approaches.
Areas covered: This review covers the application of AI and Machine Learning (ML) across the nanomedicine development pipeline, starting from drug and target identification to nanoparticle design, toxicity prediction, and personalized dosing. Different AI/ML models like QSAR, MTK-QSBER, and Alchemite, along with data sources and high-throughput screening methods, have been explored. Real-world applications are critically discussed, including AI-assisted drug repurposing, controlled-release formulations, and cancer-specific delivery systems.
Expert opinion: AI has emerged as an essential component in designing next-generation nanomedicine. Efficiently handling multidimensional datasets, optimizing formulations, and personalizing treatment regimens, it has sped up the innovation process. However, challenges like data heterogeneity, model transparency, and regulatory gaps remain. Addressing these hurdles through interdisciplinary efforts and emerging innovations like explainable AI and federated learning will pave the way for the clinical translation of AI-driven nanomedicine.