Expert opinion on drug delivery最新文献

筛选
英文 中文
Improving adherence by investigating the stability of dabigatran outside of the manufacturer's original packaging: a New Zealand perspective. 通过调查达比加群在制造商原始包装外的稳定性来改善依从性:新西兰的观点。
Expert opinion on drug delivery Pub Date : 2025-02-01 Epub Date: 2024-12-24 DOI: 10.1080/17425247.2024.2444359
Zainab Noori, Dale Griffiths, Stella Jung, Catherine Huang, Hiyori Nakano, Melody Wong, Jagdish K Jaiswal, Manisha Sharma
{"title":"Improving adherence by investigating the stability of dabigatran outside of the manufacturer's original packaging: a New Zealand perspective.","authors":"Zainab Noori, Dale Griffiths, Stella Jung, Catherine Huang, Hiyori Nakano, Melody Wong, Jagdish K Jaiswal, Manisha Sharma","doi":"10.1080/17425247.2024.2444359","DOIUrl":"10.1080/17425247.2024.2444359","url":null,"abstract":"<p><strong>Background: </strong>Dose administration aids (DAA) are widely used to improve adherence. In New Zealand (NZ) more pharmacies are utilizing automated filling robots to meet DAA demand. Pradaxa™ capsules containing dabigatran etexilate (DE) is problematic. It is moisture-sensitive, and Medsafe (NZ regulator), recommends keeping the capsule in its original packaging until administration. This prevents DE from repacking into DAA, reducing the effectiveness of the DAA. Overseas studies demonstrated stability of DE in DAA. However, the findings cannot be extrapolated to NZ environments.</p><p><strong>Research design and methods: </strong>Pradaxa™ 110 mg capsules repackaged in DAA were stored in conditions mimicking real-life settings (room temperature, bedroom and fridge) for 16 weeks. At predetermined timepoints, the capsules were evaluated for drug content and dissolution profile.</p><p><strong>Results: </strong>DE samples stored in NZ conditions for 16 weeks met the drug content requirement of 85-115% except for unit-dose sachet samples stored in fridge condition (79.7% ± 6.82). Samples demonstrated similarity in dissolution profile until 8 weeks with release rate decreased at 16 weeks under all storage conditions.</p><p><strong>Conclusion: </strong>DE capsules repackaged in DAA demonstrated stability for up to 8 weeks in all NZ storage conditions, confirming the safety of repackaging DE into a DAA.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"297-306"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hif-1α ablation reduces the efficiency of NeuroD1 gene-based therapy and aggravates the brain damage following ischemic stroke. Hif-1α消融降低了基于NeuroD1基因治疗的效率,并加重了缺血性脑卒中后的脑损伤。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-04 DOI: 10.1080/17425247.2024.2435458
Nashwa Amin, Fei Wu, Bing-Xin Zhao, Zongjie Shi, Ahmed Abdelsadik, Abuelhassan Elshazly Younis, Irum Naz Abbasi, Javaria Sundus, Azhar Badry Hussein, Yu Geng, Marong Fang
{"title":"<i>Hif-1α</i> ablation reduces the efficiency of NeuroD1 gene-based therapy and aggravates the brain damage following ischemic stroke.","authors":"Nashwa Amin, Fei Wu, Bing-Xin Zhao, Zongjie Shi, Ahmed Abdelsadik, Abuelhassan Elshazly Younis, Irum Naz Abbasi, Javaria Sundus, Azhar Badry Hussein, Yu Geng, Marong Fang","doi":"10.1080/17425247.2024.2435458","DOIUrl":"10.1080/17425247.2024.2435458","url":null,"abstract":"<p><strong>Introduction: </strong>Hypoxia-inducible factor 1α [HIF1α] regulates gene expression, allowing the organism to respond to low oxygen levels. Meanwhile, astrocytes participate in inflammatory processes and are associated with neurotoxic chemicals that can increase stroke volume, contributing considerably to the devastating effects of a stroke.</p><p><strong>Objective: </strong>To evaluate whether <i>Hif-1α</i> ablation from the central nervous system is implicated in motor dysfunction and ischemic brain damage following stroke. Furthermore, to explore if <i>Hif-1α</i> ablation affects the therapeutic impact of NeuroD1 gene-based therapy.</p><p><strong>Methods: </strong>Endothelin-1 [ET-1] was injected to induce ischemic stroke in mice. Both wild-type and Hypoxia-inducible factor 1α conditional knockout [<i>Hif-1α</i> CKO] mice were used. The effect of <i>Hif-1α</i> ablation was assessed by the neuron numbers, astrocyte activity, vascular endothelial growth factor [VEGF] expression, and behavioral tests. Moreover, western blot, ELISA, and RNA sequencing were used. Then, we used pAAV2/9-GfaABC1D-NeuroD1-P2A-EGFP-WPRE injection to examine the impact of NeuroD1 in <i>Hif-1α</i> CKO mice following ischemic stroke.</p><p><strong>Results: </strong>We found that following stroke, motor dysfunction significantly increased in <i>Hif-1α</i> CKO mice. Furthermore, elevation of apoptosis and activation in both microglia and astrocytes were observed, consequently up-regulating neuroinflammation. Meanwhile, <i>Hif-1α</i> ablation significantly decreased the efficiency of NeuroD1 gene-based therapy.</p><p><strong>Conclusion: </strong>Our findings demonstrate that <i>Hif-1α</i> ablation from the nervous system is implicated in ischemic stroke pathogenesis mainly by increasing neuron cell death and inducing astrocytes as well as decreasing the efficiency of NeuroD1. These data support the idea that manipulating HIF-1α is a viable therapeutic for ischemic stroke.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"121-138"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular nanovesicles as neurotherapeutics for central nervous system disorders. 细胞外纳米囊泡作为中枢神经系统疾病的神经疗法。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1080/17425247.2024.2440099
Naznin Bhom, Khonzisizwe Somandi, Poornima Ramburrun, Yahya E Choonara
{"title":"Extracellular nanovesicles as neurotherapeutics for central nervous system disorders.","authors":"Naznin Bhom, Khonzisizwe Somandi, Poornima Ramburrun, Yahya E Choonara","doi":"10.1080/17425247.2024.2440099","DOIUrl":"10.1080/17425247.2024.2440099","url":null,"abstract":"<p><strong>Introduction: </strong>The blood-brain barrier (BBB) is a highly selective structure that protects the central nervous system (CNS) while hindering the delivery of many therapeutic agents. This presents a major challenge in treating neurological disorders, such as multiple sclerosis, where effective drug delivery to the brain is crucial for improving patient outcomes. Innovative strategies are urgently needed to address this limitation.</p><p><strong>Areas covered: </strong>This review explores the potential of extracellular vesicles (EVs) as innovative drug delivery systems capable of crossing the BBB. EVs are membrane-bound vesicles derived from cells, tissues, or plant materials, offering natural biocompatibility and therapeutic potential. Recent studies investigating the permeability of EVs and their mechanisms for crossing the BBB, such as transcytosis, are summarized. Special emphasis is placed on plant-derived EVs (PDEVs) due to their unique advantages in drug delivery. Challenges related to the large-scale production and therapeutic consistency of EVs are also discussed.</p><p><strong>Expert opinion: </strong>EVs, particularly PDEVs, hold significant promise as scalable and noninvasive systems for CNS drug delivery. However, critical barriers such as improving standardization techniques, manufacturing processes and addressing scalability must be overcome to facilitate clinical translation. Collaborative efforts in research and innovation will be pivotal in realizing the therapeutic potential of EVs for neurological conditions.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"69-84"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatility of emulgel in topical drug delivery transforming its expedition from bench to bedside. 多功能性凝胶在局部给药转变其远征从实验室到床边。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-11 DOI: 10.1080/17425247.2024.2439457
Pragati Ramesh Kumbhar, Harita Desai, Vaibhavi Meghraj Desai, Sakshi Priya, Vikas Rana, Gautam Singhvi
{"title":"Versatility of emulgel in topical drug delivery transforming its expedition from bench to bedside.","authors":"Pragati Ramesh Kumbhar, Harita Desai, Vaibhavi Meghraj Desai, Sakshi Priya, Vikas Rana, Gautam Singhvi","doi":"10.1080/17425247.2024.2439457","DOIUrl":"10.1080/17425247.2024.2439457","url":null,"abstract":"<p><strong>Introduction: </strong>Emulgel is a novel formulation that improves drug's stability and topical administration by combining emulsion and gel matrix. Its special structure improves skin penetration and prolongs the release of therapeutic molecules. Emulgel is unique in the commercial market because of its therapeutic effects, convenience of usage, and versatility in both pharmaceutical and cosmetic uses. This report focuses on how it may improve user experience and transform topical treatments.</p><p><strong>Areas covered: </strong>This review explores the commercial applicability of emulgels as a topical delivery system. Industrially applicable composition and manufacturing strategies have been discussed along with characterization techniques. The market landscape, being the most critical aspect, has been thoroughly discussed with recent case studies, clinical trials, patents, and commercial formulations. The compiled findings in this review are adapted from reputed databases like Scopus, PubMed, Web of Science, NIH, ClinicalTrials.gov, Espacenet, and recent research articles published between years 2010-2024 that discussed the applications of emulgel.</p><p><strong>Expert opinion: </strong>Emulgels have gained commercialization potential because of their efficient drug delivery and patient-friendly qualities. However, navigating regulatory complexity is important because imprecise classifications may affect market access. Sustained innovation will be essential for overcoming these obstacles and improving chances in future.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"55-68"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiple targeting rapamycin and SS31 conjugate enhances ischemic stroke therapy. 多靶点雷帕霉素和SS31结合物增强缺血性卒中治疗。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1080/17425247.2024.2440094
Andi Sun, Weijia Huang, Kai Jin, Mingyuan Zhong, Bohong Yu, Xin Li, Yongjun Wang, Hongzhuo Liu
{"title":"A multiple targeting rapamycin and SS31 conjugate enhances ischemic stroke therapy.","authors":"Andi Sun, Weijia Huang, Kai Jin, Mingyuan Zhong, Bohong Yu, Xin Li, Yongjun Wang, Hongzhuo Liu","doi":"10.1080/17425247.2024.2440094","DOIUrl":"10.1080/17425247.2024.2440094","url":null,"abstract":"<p><strong>Background: </strong>The identification of drugs targeting multiple pathways is essential for comprehensive protection against cerebral ischemia-reperfusion injury.</p><p><strong>Research design and methods: </strong>This study aimed to develop RS31, a multi-target cytoprotectant composed of SS31 (an oxidative stress mitigator) and rapamycin (Rapa), contributes anti-inflammatory and blood-brain barrier protection. RS31 was synthesized using click chemistry, and its ability to scavenge reactive oxygen species (ROS) and reduce inflammation was tested in H<sub>2</sub>O<sub>2</sub>-injured PC12 cells and LPS-stimulated BV2 cells. A C57BL/6 mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) was established to assess the effect of RS31 on inflammatory factors in ischemic brain tissue. Finally, the potential of combining RS31 with PLGA microparticles (MPs) to further reduce brain edema was investigated.</p><p><strong>Results: </strong>RS31 effectively scavenged ROS and reduced inflammation. It showed a ~ 4-fold higher concentration in cerebral ischemic regions, significant reducing infarction and improving neurological function. RS31 also effectively reduced inflammatory factors, lowered malondialdehyde (MDA) levels, and increased superoxide dismutase (SOD) activity, showing strong efficacy in treating ischemic stroke.</p><p><strong>Conclusions: </strong>In vivo delivery of RS31 is an effective therapeutic strategy for I/R injury, providing a general framework for developing multi-targeted drugs against inflammatory diseases and excessive ROS production.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"109-120"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. 腹膜癌微球治疗的进展:挑战、创新和未来展望。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1080/17425247.2024.2439462
Zhitao Cai, Boyuan Liu, Qing Cai, Jingxin Gou, Xing Tang
{"title":"Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects.","authors":"Zhitao Cai, Boyuan Liu, Qing Cai, Jingxin Gou, Xing Tang","doi":"10.1080/17425247.2024.2439462","DOIUrl":"10.1080/17425247.2024.2439462","url":null,"abstract":"<p><strong>Introduction: </strong>Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC.</p><p><strong>Areas covered: </strong>We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC.</p><p><strong>Expert opinion: </strong>Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"31-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium phosphate coated nanoparticles for drug delivery: where are we now? 用于给药的磷酸钙包被纳米颗粒:进展如何?
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-13 DOI: 10.1080/17425247.2024.2440100
Vuk Uskoković
{"title":"Calcium phosphate coated nanoparticles for drug delivery: where are we now?","authors":"Vuk Uskoković","doi":"10.1080/17425247.2024.2440100","DOIUrl":"10.1080/17425247.2024.2440100","url":null,"abstract":"<p><strong>Introduction: </strong>For three decades since the term 'biomaterial' was defined in the late 1960s, the interest of the biomaterials research community in calcium phosphates (CaPs) constantly increased. After this interest reached its peak in the mid-1990s, however, it has begun its steady decline, which lasts to this day, the reasons being manifold, many of which are explicated in this review piece. As of this turning point onwards, one solution for CaP to regain its relevance has involved its use in composite structures where properties of complementary components are intended to mitigate each other's weaknesses. A major type of such hybrid particulate structures has included CaP as a surface coating, the goal being to augment bioactivity, promote an intimate interaction with living tissues, facilitate cellular uptake and/or impart smart, pH-sensitive properties to the particles, among other intended effects.</p><p><strong>Areas covered: </strong>In this review article, historical remarks, recent examples, challenges and opportunities pertaining to CaP-coated nanoparticles for drug delivery are elaborated. Discussion is supplemented with a bibliographic analysis and framed within a chronological timeline.</p><p><strong>Expert opinion: </strong>Phenomenal properties and functions are bound to be elicited by composite structures containing CaP coatings and it is imperative that the exploration of these hybrids continues in decades that follow.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"47-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetalated dextran: a novel delivery platform for particle-based vaccines. 醋酸化右旋糖酐:一种新型颗粒基疫苗递送平台。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-23 DOI: 10.1080/17425247.2024.2442671
Grace L Williamson, Denzel D Middleton, Kristy M Ainslie, Eric M Bachelder
{"title":"Acetalated dextran: a novel delivery platform for particle-based vaccines.","authors":"Grace L Williamson, Denzel D Middleton, Kristy M Ainslie, Eric M Bachelder","doi":"10.1080/17425247.2024.2442671","DOIUrl":"10.1080/17425247.2024.2442671","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in ultrasound-mediated drug delivery for central nervous system disorders. 超声介导给药治疗中枢神经系统疾病的研究进展。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI: 10.1080/17425247.2024.2438188
Chi-Fen Chuang, Thi-Nhan Phan, Ching-Hsiang Fan, Thanh-Thuy Vo Le, Chih-Kuang Yeh
{"title":"Advancements in ultrasound-mediated drug delivery for central nervous system disorders.","authors":"Chi-Fen Chuang, Thi-Nhan Phan, Ching-Hsiang Fan, Thanh-Thuy Vo Le, Chih-Kuang Yeh","doi":"10.1080/17425247.2024.2438188","DOIUrl":"10.1080/17425247.2024.2438188","url":null,"abstract":"<p><strong>Introduction: </strong>Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS.</p><p><strong>Areas covered: </strong>This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed.</p><p><strong>Expert opinion: </strong>FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"15-30"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bovine serum albumin nanoparticles: a promising platform for nasal drug delivery. 牛血清白蛋白纳米颗粒:一个有前途的鼻腔给药平台。
Expert opinion on drug delivery Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI: 10.1080/17425247.2024.2436117
Sandra Aulia Mardikasari, Gábor Katona, Ildikó Csóka
{"title":"Bovine serum albumin nanoparticles: a promising platform for nasal drug delivery.","authors":"Sandra Aulia Mardikasari, Gábor Katona, Ildikó Csóka","doi":"10.1080/17425247.2024.2436117","DOIUrl":"10.1080/17425247.2024.2436117","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"7-10"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信