Expert opinion on drug delivery最新文献

筛选
英文 中文
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods. 用于输送植物生物活性物质的固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC):第一部分--成分和生产方法。
Expert opinion on drug delivery Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI: 10.1080/17425247.2024.2410951
Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto
{"title":"Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods.","authors":"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto","doi":"10.1080/17425247.2024.2410951","DOIUrl":"10.1080/17425247.2024.2410951","url":null,"abstract":"<p><strong>Introduction: </strong>Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources.</p><p><strong>Areas covered: </strong>This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields.</p><p><strong>Expert opinion: </strong>SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1479-1490"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogel formulations for orthotopic treatment of myocardial infarction. 用于正位治疗心肌梗塞的水凝胶配方。
Expert opinion on drug delivery Pub Date : 2024-10-01 Epub Date: 2024-10-03 DOI: 10.1080/17425247.2024.2409906
Qiang Luo, Zhibo Li, Bin Liu, Jianxun Ding
{"title":"Hydrogel formulations for orthotopic treatment of myocardial infarction.","authors":"Qiang Luo, Zhibo Li, Bin Liu, Jianxun Ding","doi":"10.1080/17425247.2024.2409906","DOIUrl":"10.1080/17425247.2024.2409906","url":null,"abstract":"<p><strong>Introduction: </strong>Myocardial infarction (MI) causes extensive structural and functional damage to the cardiac tissue due to the significant loss of cardiomyocytes. Early reperfusion is the standard treatment strategy for acute MI, but it is associated with adverse effects. Additionally, current therapies to alleviate pathological changes post-MI are not effective. Subsequent pathological remodeling of the damaged myocardium often results in heart failure. Oral drugs aimed at reducing myocardial damage and remodeling require repeated administration of high doses to maintain therapeutic levels. This compromises efficacy and patient adherence and may cause adverse effects, such as hypotension and liver and/or kidney dysfunction. Hydrogels have emerged as an effective delivery platform for orthotopic treatment of MI due to their high water content and excellent tissue compatibility.</p><p><strong>Area covered: </strong>Hydrogels create an optimal microenvironment for delivering drugs, proteins, and cells, preserving their efficacy and increasing their bioavailability. Current research focuses on discovering functional hydrogels for mitigating myocardial damage and regulating repair processes in MI treatment.</p><p><strong>Expert opinion: </strong>Hydrogels offer a promising approach in enhancing cardiac repair and improving patient outcomes post-MI. Advancements in hydrogel technology are poised to transform MI therapy, paving the way for personalized treatment strategies and enhanced recovery.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1463-1478"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements. 固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC)用于输送来自植物的生物活性物质:第二部分--应用和临床前进展。
Expert opinion on drug delivery Pub Date : 2024-10-01 Epub Date: 2024-10-04 DOI: 10.1080/17425247.2024.2410949
Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto
{"title":"Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements.","authors":"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto","doi":"10.1080/17425247.2024.2410949","DOIUrl":"10.1080/17425247.2024.2410949","url":null,"abstract":"<p><strong>Introduction: </strong>Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes.</p><p><strong>Areas covered: </strong>This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market.</p><p><strong>Expert opinion: </strong>Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. <i>In vitro</i> and <i>invivo</i> studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1491-1499"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential bladder cancer therapeutic delivery systems: a recent update. 潜在的膀胱癌治疗给药系统:最新进展。
Expert opinion on drug delivery Pub Date : 2024-09-01 Epub Date: 2024-09-11 DOI: 10.1080/17425247.2024.2396958
Oluwadamilola M Kolawole, Vitaliy V Khutoryanskiy
{"title":"Potential bladder cancer therapeutic delivery systems: a recent update.","authors":"Oluwadamilola M Kolawole, Vitaliy V Khutoryanskiy","doi":"10.1080/17425247.2024.2396958","DOIUrl":"10.1080/17425247.2024.2396958","url":null,"abstract":"<p><strong>Introduction: </strong>Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients.</p><p><strong>Areas covered: </strong>This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics.</p><p><strong>Expert opinion: </strong>This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1311-1329"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. 用于器官特异性癌症靶向治疗的脂质体给药系统:早期承诺、后续问题和近期突破。
Expert opinion on drug delivery Pub Date : 2024-09-01 Epub Date: 2024-09-16 DOI: 10.1080/17425247.2024.2394611
Fahimeh Zahednezhad, Saeideh Allahyari, Muhammad Sarfraz, Parvin Zakeri-Milani, Mohammad Feyzizadeh, Hadi Valizadeh
{"title":"Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs.","authors":"Fahimeh Zahednezhad, Saeideh Allahyari, Muhammad Sarfraz, Parvin Zakeri-Milani, Mohammad Feyzizadeh, Hadi Valizadeh","doi":"10.1080/17425247.2024.2394611","DOIUrl":"10.1080/17425247.2024.2394611","url":null,"abstract":"<p><strong>Introduction: </strong>Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting.</p><p><strong>Areas covered: </strong>Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties.</p><p><strong>Expert opinion: </strong>Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1363-1384"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photodynamic therapy of cancer using graphene nanomaterials. 利用石墨烯纳米材料对癌症进行光动力治疗。
Expert opinion on drug delivery Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1080/17425247.2024.2398604
Sanjay Tiwari, Binny A Rudani, Priyanka Tiwari, Pratap Bahadur, Swaran J S Flora
{"title":"Photodynamic therapy of cancer using graphene nanomaterials.","authors":"Sanjay Tiwari, Binny A Rudani, Priyanka Tiwari, Pratap Bahadur, Swaran J S Flora","doi":"10.1080/17425247.2024.2398604","DOIUrl":"10.1080/17425247.2024.2398604","url":null,"abstract":"<p><strong>Introduction: </strong>High incidence and fatality rates of cancer remain a global challenge. The success of conventional treatment modalities is being questioned on account of adverse effects. Photodynamic therapy (PDT) is a potential alternative. It utilizes a combination of photosensitizer (PS), light and oxygen to target the tissues locally, thereby minimizing the damage to neighboring healthy tissues. Conventional PSs suffer from poor selectivity, high hydrophobicity and sub-optimal yield of active radicals. Graphene nanomaterials (GNs) exhibit interesting particulate and photophysical properties in the context of their use in PDT.</p><p><strong>Area covered: </strong>We focus on describing the mechanistic aspects of PDT-mediated elimination of cancer cells and the subsequent development of adaptive immunity. After covering up-to-date literature on the significant enhancement of PDT capability with GNs, we have discussed the probability of combining PDT with chemo-, immuno-, and photothermal therapy to make the treatment more effective.</p><p><strong>Expert opinion: </strong>GNs can be synthesized in various size ranges, and their biocompatibility can be improved through surface functionalization and doping. These can be used as PS to generate ROS or conjugated with other PS molecules for treating deep-seated tumors. With increasing evidence on biosafety, such materials offer hope as antitumor therapeutics.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1331-1348"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy. 用于抗原递送的生物可降解纳米平台:第二部分--用于癌症免疫疗法的纳米颗粒、水凝胶和微针。
Expert opinion on drug delivery Pub Date : 2024-09-01 Epub Date: 2024-09-08 DOI: 10.1080/17425247.2024.2400291
Jordi Madariaga Burgos, Estefanía Vega, María Luisa García, Montserrat Pujol, Elena Sánchez-López, Eliana B Souto
{"title":"Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy.","authors":"Jordi Madariaga Burgos, Estefanía Vega, María Luisa García, Montserrat Pujol, Elena Sánchez-López, Eliana B Souto","doi":"10.1080/17425247.2024.2400291","DOIUrl":"10.1080/17425247.2024.2400291","url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved.</p><p><strong>Areascovered: </strong>CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial.</p><p><strong>Expert opinion: </strong>We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1385-1394"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic nanoparticles incorporated with transdermal drug delivery systems. 无机纳米颗粒与透皮给药系统的结合。
Expert opinion on drug delivery Pub Date : 2024-09-01 Epub Date: 2024-09-03 DOI: 10.1080/17425247.2024.2399710
Sukaina Nimrawi, Peter Gannett, Young M Kwon
{"title":"Inorganic nanoparticles incorporated with transdermal drug delivery systems.","authors":"Sukaina Nimrawi, Peter Gannett, Young M Kwon","doi":"10.1080/17425247.2024.2399710","DOIUrl":"10.1080/17425247.2024.2399710","url":null,"abstract":"<p><strong>Introduction: </strong>Transdermal drug delivery (TDD) is becoming more recognized as a noninvasive method particularly suitable for vulnerable populations. TDD offers an alternative to oral drug delivery, bypassing issues related to poor absorption and metabolism. However, the application of TDD is limited to a few drugs due to the skin's barrier. Various techniques, including passive methods like nanoparticles (NPs), are being explored to enhance drug permeability through the skin.</p><p><strong>Areas covered: </strong>This review shows the benefit of incorporating inorganic NPs with TDD in improving drug delivery through the skin. Despite the potential of these techniques, there are currently only a few research studies that utilize them. This review addresses the scarcity of research incorporating inorganic NPs with TDD. It also aims to summarize both inorganic NPs and TDD in the pharmaceutical industry, highlighting the advantages of incorporating these novel drug delivery systems with each other.</p><p><strong>Expert opinion: </strong>Given the potential benefits of incorporating inorganic NPs into TDD systems, there is a need for increased research and attention in this area. The review encourages scientists to address the existing research gap and explore the advantages of combining these innovative drug delivery systems to advance the field.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1349-1362"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights. 探索皮肤癌靶向治疗方法的治疗模式:前沿策略和重要见解。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-08-19 DOI: 10.1080/17425247.2024.2392799
Vaibhavi Meghraj Desai, Pragati Kumbhar, Akanksha Yogesh Kadam, Jayanti Swarup, Sakshi Priya, Ankit Jain, Gautam Singhvi
{"title":"Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights.","authors":"Vaibhavi Meghraj Desai, Pragati Kumbhar, Akanksha Yogesh Kadam, Jayanti Swarup, Sakshi Priya, Ankit Jain, Gautam Singhvi","doi":"10.1080/17425247.2024.2392799","DOIUrl":"10.1080/17425247.2024.2392799","url":null,"abstract":"<p><strong>Introduction: </strong>Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues.</p><p><strong>Areas covered: </strong>This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer.</p><p><strong>Expert opinion: </strong>Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1213-1233"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formative and validation human factors studies of a new disposable prefilled injection device for subcutaneous delivery of acthar gel (repository corticotropin injection). 对用于皮下注射 acthar 凝胶(贮藏促肾上腺皮质激素注射液)的新型一次性预灌封注射装置进行形成性和验证性人为因素研究。
Expert opinion on drug delivery Pub Date : 2024-08-01 Epub Date: 2024-08-29 DOI: 10.1080/17425247.2024.2390553
Arthur Linnane, Michael Lau, Priya Miranda, Sheila Elliott
{"title":"Formative and validation human factors studies of a new disposable prefilled injection device for subcutaneous delivery of acthar gel (repository corticotropin injection).","authors":"Arthur Linnane, Michael Lau, Priya Miranda, Sheila Elliott","doi":"10.1080/17425247.2024.2390553","DOIUrl":"10.1080/17425247.2024.2390553","url":null,"abstract":"<p><strong>Background: </strong>The administration of repository corticotropin injection (Acthar Gel) via a single-dose prefilled injector (SelfJect) is intended to provide a simple, ergonomic alternative to traditional injection. Iterative human factors (HF) studies were conducted to identify potential use deviations and ensure appropriate device use.</p><p><strong>Research design and methods: </strong>This article presents seven formative studies, a validation study (with prior pilot validation studies), and a supplemental validation study with participants including lay users, patients, caregivers, and healthcare providers. Participant interactions with SelfJect and the user interface were assessed. Use deviations, user preferences, and participants' ability to successfully complete tasks were evaluated to generate modifications to the device and user interface.</p><p><strong>Results: </strong>In the validation study, 91% of participants successfully administered their first injection. Use errors were rare with simulated-use (6.9%) and knowledge-based (1.6%) testing. Use deviations were commonly attributed to experimental artifact or information oversight, and device warming had the most use errors (49% of participants), even with extensive testing and adjustments to the user interface.</p><p><strong>Conclusions: </strong>SelfJect was able to be used in a safe and effective manner by the intended users. Iterative HF studies informed the mitigation of use-related risks to reduce the occurrence of use deviations during simulated use.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1263-1278"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信