纳米气泡在超声介导药物传递中的研究进展及潜力。

Laura E Chen, Pinunta Nittayacharn, Agata A Exner
{"title":"纳米气泡在超声介导药物传递中的研究进展及潜力。","authors":"Laura E Chen, Pinunta Nittayacharn, Agata A Exner","doi":"10.1080/17425247.2025.2505044","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Despite much progress, nanomedicine-based drug therapies in oncology remain limited by systemic toxicity and insufficient particle accumulation in the tumor. To address these barriers, formulations responsive to external physical stimuli have emerged. One most promising system is the ultrasound stimulation of drug-loaded, gas-core particles (bubbles). Ultrasound induces bubble cavitation for cell and tissue permeabilization, triggers on-demand drug release, and provides opportunities for real-time imaging of delivery.</p><p><strong>Areas covered: </strong>Here, we focus on shell-stabilized, gas-core nanoparticles (also termed nanobubbles or ultrafine bubbles) and their role in ultrasound-mediated therapeutic delivery to tumors. This review frames the advantages of nanobubbles within the ongoing deficits in nanomedicine, describes mechanisms of ultrasound-mediated therapy, and details formulation techniques for nanobubble delivery systems. It then highlights the past decade of research in nanobubble-facilitated drug delivery for cancer therapy and anticipates new directions in the field.</p><p><strong>Expert opinion: </strong>Nanobubble ultrasound contrast agents offer a spatiotemporally triggerable therapeutic coupled with a safe, accessible imaging modality. Nanobubbles can be loaded with diverse therapeutic cargoes to treat disease and overcome numerous barriers limiting delivery to solid tumors. Close attention to formulation, characterization methods, acoustic testing parameters, and the biological mechanisms of nanobubble delivery will facilitate preclinical research toward clinical adoption.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and potential of nanobubbles for ultrasound-mediated drug delivery.\",\"authors\":\"Laura E Chen, Pinunta Nittayacharn, Agata A Exner\",\"doi\":\"10.1080/17425247.2025.2505044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Despite much progress, nanomedicine-based drug therapies in oncology remain limited by systemic toxicity and insufficient particle accumulation in the tumor. To address these barriers, formulations responsive to external physical stimuli have emerged. One most promising system is the ultrasound stimulation of drug-loaded, gas-core particles (bubbles). Ultrasound induces bubble cavitation for cell and tissue permeabilization, triggers on-demand drug release, and provides opportunities for real-time imaging of delivery.</p><p><strong>Areas covered: </strong>Here, we focus on shell-stabilized, gas-core nanoparticles (also termed nanobubbles or ultrafine bubbles) and their role in ultrasound-mediated therapeutic delivery to tumors. This review frames the advantages of nanobubbles within the ongoing deficits in nanomedicine, describes mechanisms of ultrasound-mediated therapy, and details formulation techniques for nanobubble delivery systems. It then highlights the past decade of research in nanobubble-facilitated drug delivery for cancer therapy and anticipates new directions in the field.</p><p><strong>Expert opinion: </strong>Nanobubble ultrasound contrast agents offer a spatiotemporally triggerable therapeutic coupled with a safe, accessible imaging modality. Nanobubbles can be loaded with diverse therapeutic cargoes to treat disease and overcome numerous barriers limiting delivery to solid tumors. Close attention to formulation, characterization methods, acoustic testing parameters, and the biological mechanisms of nanobubble delivery will facilitate preclinical research toward clinical adoption.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2505044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2505044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:尽管取得了很大进展,但基于纳米医学的肿瘤药物治疗仍然受到全身毒性和肿瘤中颗粒积累不足的限制。为了解决这些障碍,响应外部物理刺激的配方已经出现。一种最有前途的系统是用超声波刺激载药的气芯粒子(气泡)。超声诱导细胞和组织渗透的气泡空化,触发按需药物释放,并提供实时成像给药的机会。涉及领域:在这里,我们专注于壳稳定的气核纳米颗粒(也称为纳米气泡或超细气泡)及其在超声介导的肿瘤治疗递送中的作用。本文综述了纳米气泡在纳米医学领域的优势,描述了超声介导治疗的机制,并详细介绍了纳米气泡递送系统的配方技术。然后重点介绍了过去十年在纳米气泡促进癌症治疗药物输送方面的研究,并展望了该领域的新方向。专家意见:纳米气泡超声造影剂提供了一种时空可触发的治疗方法,同时又具有安全、方便的成像方式。纳米气泡可以装载不同的治疗货物来治疗疾病,并克服许多限制向实体肿瘤输送的障碍。密切关注纳米气泡递送的配方、表征方法、声学测试参数和生物学机制,将有助于临床前研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress and potential of nanobubbles for ultrasound-mediated drug delivery.

Introduction: Despite much progress, nanomedicine-based drug therapies in oncology remain limited by systemic toxicity and insufficient particle accumulation in the tumor. To address these barriers, formulations responsive to external physical stimuli have emerged. One most promising system is the ultrasound stimulation of drug-loaded, gas-core particles (bubbles). Ultrasound induces bubble cavitation for cell and tissue permeabilization, triggers on-demand drug release, and provides opportunities for real-time imaging of delivery.

Areas covered: Here, we focus on shell-stabilized, gas-core nanoparticles (also termed nanobubbles or ultrafine bubbles) and their role in ultrasound-mediated therapeutic delivery to tumors. This review frames the advantages of nanobubbles within the ongoing deficits in nanomedicine, describes mechanisms of ultrasound-mediated therapy, and details formulation techniques for nanobubble delivery systems. It then highlights the past decade of research in nanobubble-facilitated drug delivery for cancer therapy and anticipates new directions in the field.

Expert opinion: Nanobubble ultrasound contrast agents offer a spatiotemporally triggerable therapeutic coupled with a safe, accessible imaging modality. Nanobubbles can be loaded with diverse therapeutic cargoes to treat disease and overcome numerous barriers limiting delivery to solid tumors. Close attention to formulation, characterization methods, acoustic testing parameters, and the biological mechanisms of nanobubble delivery will facilitate preclinical research toward clinical adoption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信