Sai Sanjeet;Sanchari Das;Shiuh-Hua Wood Chiang;Masahiro Fujita;Bibhu Datta Datta
{"title":"Systematic Design of Ring VCO-Based SNN—Translating Training Parameters to Circuits","authors":"Sai Sanjeet;Sanchari Das;Shiuh-Hua Wood Chiang;Masahiro Fujita;Bibhu Datta Datta","doi":"10.1109/OJCAS.2025.3585654","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3585654","url":null,"abstract":"The deployment of digitally-trained analog Spiking Neural Networks (SNNs) presents a promising approach for energy-efficient edge computing. However, training such networks is not trivial, and discrepancies between digital training models and their continuous-time analog implementations pose challenges in validation and performance verification. This paper aims to bridge the gap between the design of analog neuron models and training SNNs with the neuron model, along with a time-domain verification framework that enables circuit designers to validate their analog SNN implementations in a simulation environment resembling industry-standard EDA tools such as Cadence and Synopsys while offering significantly faster execution. This work focuses on a ring oscillator-based neuron model, which realizes the leaky integrate-and-fire (LIF) neuron. The design of the ring oscillator-based neuron is discussed, and the neuron model is digitized using the bilinear transform to enable training. The trained network is used to classify the MNIST dataset with an accuracy of 97.35% and the Iris dataset with an accuracy of 93.33%. We further introduce a time-domain verification framework based on Simulink to validate the trained networks. We verify our approach by comparing digitally-trained PyTorch models against analog implementations simulated using our framework on the Iris dataset, revealing accuracy discrepancies between the analog and digital counterparts, along with insights into the cause of such discrepancies, which would have been difficult to simulate with SPICE simulators. Additionally, we verify the generated Simulink models against Verilog-A models simulated in Cadence Spectre, demonstrating that our framework produces identical outputs while achieving an order-of-magnitude speedup. By providing an efficient, accurate, and accessible verification platform, our framework bridges the gap between digital training and analog hardware verification, facilitating the development of robust, high-performance SNNs for edge applications.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"283-294"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyedmohamadjavad Motaman;Sarah S. Sharif;Yaser M. Banad
{"title":"Biologically-Inspired, Ultra-Low Power, and High-Speed Integrate-and-Fire Neuron Circuit With Stochastic Behavior Using Nanoscale Side-Contacted Field Effect Diode Technology","authors":"Seyedmohamadjavad Motaman;Sarah S. Sharif;Yaser M. Banad","doi":"10.1109/OJCAS.2025.3549442","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3549442","url":null,"abstract":"Enhancing power efficiency and performance in neuromorphic computing systems is critical for next-generation artificial intelligence applications. We propose the Nanoscale Side-contacted Field Effect Diode (S-FED)—a novel solution that significantly lowers power usage and improves circuit speed—enabling efficient neuron circuit design. Our proposed integrate-and-fire (IF) neuron model demonstrates remarkable performance metrics: 44 nW power consumption (85% lower than current designs), 0.964 fJ energy per spike (36% improvement over state-of-the-art), and a spiking frequency ranging from 20 to 100 MHz. Moreover, we show how to bias the circuit to enable both deterministic and stochastic operation, mimicking key computational features of biological neurons. The stochastic behavior can be precisely controlled through reference voltage modulation, achieving firing probabilities from 0% to 100% and enabling probabilistic computing capabilities. The architecture exhibits robust stability across process (channel length and doping)-voltage-temperature (PVT) variations, maintaining consistent performance with less than 7% spike amplitude variation for channel lengths from 7.5nm to 15nm, doping from <inline-formula> <tex-math>$5times 10{^{{20}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^ - 3 $ </tex-math></inline-formula> to <inline-formula> <tex-math>$1times 10{^{{2}}} {^{{1}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^ - 3 $ </tex-math></inline-formula>, supply voltages from 0.8V to 1.2V, and temperatures spanning −40°C to 120°C. The model features tunable thresholds (0.8V to 1.4V) and reliable operation across input spike pulse widths from 0.5 ns to 2 ns. This advancement in neuromorphic hardware paves the way for more efficient brain-inspired computing systems.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"217-227"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106515","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Lightweight Hybrid Random Number Generator With Dynamic Entropy Injection","authors":"Sonia Akter;Shelby Williams;Prosen Kirtonia;Magdy Bayoumi;Kasem Khalil","doi":"10.1109/OJCAS.2025.3582975","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3582975","url":null,"abstract":"This paper presents a lightweight hybrid random number generator (HRNG), implemented and evaluated on a Field-Programmable Gate Array (FPGA). The proposed design enhances security and randomness by synergizing jitter and metastability using a feedforward topology, which achieves a near-perfect Shannon entropy. Moreover, it is validated using three distinct entropy metrics, guaranteeing statistically robust random numbers for security-sensitive applications. In addition to entropy evaluations, this design is also rigorously analyzed using multiple industry-standard randomness test suites. Beyond the FPGA implementation, this work presents performance metrics, including area utilization, power consumption, maximum frequency, and energy usage per random bit, which are synthesized across three different technology nodes in Synopsys Design Compiler (SDC). All of the results from the FPGA and the SDC implementations demonstrate significant improvements. These results confirm the design’s scalability to advance technology nodes and its suitability for applications that require secure and reliable random number generation, such as resource-efficient Internet of Things (IoT) devices.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"257-269"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106931","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Ultralow-Voltage Retention SRAM Cell Enhancing Noise Immunity","authors":"Katsutoshi Ito;Yusaku Shiotsu;Satoshi Sugahara","doi":"10.1109/OJCAS.2025.3594022","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3594022","url":null,"abstract":"A new ultralow-voltage retention (ULVR) SRAM cell is proposed, which can highly enhance the noise margin (NM) for the ULVR mode at ultralow voltages <inline-formula> <tex-math>$(V_{mathrm { UL}})$ </tex-math></inline-formula>. This 8T cell is configured with new-type Schmitt-trigger (ST) inverters that can nearly maximize the hysteresis width of the voltage transfer characteristics (VTC). The design methodology of the cell is developed with careful consideration for the process variation of the constituent transistors, and the optimally designed cell can ensure sufficient NMs that satisfy the <inline-formula> <tex-math>$6sigma $ </tex-math></inline-formula> failure probability for all the operating modes. In particular, for the ULVR mode at <inline-formula> <tex-math>$V_{mathrm { UL}} {=} 0.2$ </tex-math></inline-formula> V, the proposed 8T cell can exhibit much stronger noise immunity than previously proposed various low-voltage cells. In addition, the proposed 8T cell can achieve stable data retention even at <inline-formula> <tex-math>$V_{mathrm { UL}} {=} 0.16$ </tex-math></inline-formula> V with sufficient noise immunity satisfying the <inline-formula> <tex-math>$6sigma $ </tex-math></inline-formula> failure probability. An 8kB ULVR-SRAM macro configured with the proposed-8T-cell array is also developed. Using the ULVR mode, the macro can reduce the standby power by ~93% compared with the standby mode of a conventional 6T-SRAM macro.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"370-382"},"PeriodicalIF":2.4,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144990264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantinos Metaxas;Paul P. Sotiriadis;Yannis Kominis
{"title":"Complex Synchronization Dynamics of Electronic Oscillators–Part I: A Time-Domain Approach via Phase-Amplitude Reduced Models","authors":"Konstantinos Metaxas;Paul P. Sotiriadis;Yannis Kominis","doi":"10.1109/OJCAS.2025.3592773","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3592773","url":null,"abstract":"This work introduces a rigorous time-domain approach for studying the complex synchronization dynamics of periodically forced electronic oscillators, based on the well-developed theories of Phase-Amplitude reduction via the Koopman operator and dynamics of circle maps. The paper is structured in two parts. Part I presents the theoretical foundation and the numerical application of the theory. Under suitable forcing, the reduced equations simplify to a one-dimensional phase model—represented by a circle map—whose bifurcations are determined by the Phase Response Curves. This map efficiently captures the oscillator’s dynamics and enables accurate computation of resonance regions in the forcing parameter space. The influence of global isochron geometry on the map validates their critical role in phase locking, extending previous results in the theory of electronic oscillators. For more general forcing scenarios, the full Phase-Amplitude reduction effectively describes the synchronization dynamics. The developed time-domain approach demonstrates that the same limit cycle oscillator can produce periodic output with tunable spectral characteristics, operating as a frequency divider, or function as a chaotic or quasiperiodic signal generator, depending on the driving signal. As an illustrative example, the synchronization dynamics of differential LC oscillators is studied in detail. Part II is dedicated to confirming the validity, generality, and robustness of the introduced approach, which is first presented as a detailed step-by-step methodology, suitable for direct application to any oscillator. The Colpitts and ring oscillators are analyzed theoretically, and their resonance diagrams are numerically computed, following the approach established in Part I. Simulations of realistically implemented models in the Cadence IC Suite show that both synchronized and chaotic/quasiperiodic states are accurately predicted by the reduced circle map. Notably, despite the use of simplified analytical models, the theoretical framework effectively captures the qualitative behavior observed in simulation. The consistency between the theoretical and simulation results confirms both the robustness and general applicability of the proposed approach.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"329-342"},"PeriodicalIF":2.4,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11096569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantinos Metaxas;Nikolaos P. Eleftheriou;Yannis Kominis;Paul P. Sotiriadis
{"title":"Complex Synchronization Dynamics of Electronic Oscillators–Part II: Simulations and Validation of Phase-Amplitude Reduced Models","authors":"Konstantinos Metaxas;Nikolaos P. Eleftheriou;Yannis Kominis;Paul P. Sotiriadis","doi":"10.1109/OJCAS.2025.3592750","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3592750","url":null,"abstract":"This work introduces a rigorous time-domain approach for studying the complex synchronization dynamics of periodically forced electronic oscillators, based on the well-developed theories of Phase-Amplitude reduction via the Koopman operator and dynamics of circle maps. The paper is structured in two parts. Part I presents the theoretical foundation and the numerical application of the theory. Under suitable forcing, the reduced equations simplify to a one-dimensional phase model—represented by a circle map—whose bifurcations are determined by the Phase Response Curves. This map efficiently captures the oscillator’s dynamics and enables accurate computation of resonance regions in the forcing parameter space. The influence of global isochron geometry on the map validates their critical role in phase locking, extending previous results in the theory of electronic oscillators. For more general forcing scenarios, the full Phase-Amplitude reduction effectively describes the synchronization dynamics. The developed time-domain approach demonstrates that the same limit cycle oscillator can produce periodic output with tunable spectral characteristics, operating as a frequency divider, or function as a chaotic or quasiperiodic signal generator, depending on the driving signal. As an illustrative example, the synchronization dynamics of differential LC oscillators is studied in detail. Part II is dedicated to confirming the validity, generality, and robustness of the introduced approach, which is first presented as a detailed step-by-step methodology, suitable for direct application to any oscillator. The Colpitts and ring oscillators are analyzed theoretically, and their resonance diagrams are numerically computed, following the approach established in Part I. Simulations of realistically implemented models in the Cadence IC Suite show that both synchronized and chaotic/quasiperiodic states are accurately predicted by the reduced circle map. Notably, despite the use of simplified analytical models, the theoretical framework effectively captures the qualitative behavior observed in simulation. The consistency between the theoretical and simulation results confirms both the robustness and general applicability of the proposed approach.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"343-355"},"PeriodicalIF":2.4,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11096566","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly-Efficient Hardware Architecture for ML-KEM PQC Standard","authors":"Haesung Jung;Quang Dang Truong;Hanho Lee","doi":"10.1109/OJCAS.2025.3591136","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3591136","url":null,"abstract":"The advent of quantum computers, with their immense computational potential, poses significant threats to traditional cryptographic systems. In response, NIST announced the quantum-resistant Module Lattice-based Key Encapsulation Mechanism (ML-KEM) standard in 2024. This paper presents an efficient hardware architecture for the ML-KEM scheme, capable of supporting all algorithms and flexibly adapting to different security levels. The proposed design achieves a balance between high performance and low hardware resource consumption, making it suitable for deployment across various FPGA platforms. Key innovations include the Unified Polynomial Arithmetic Module (UniPAM), capable of handling all polynomial arithmetic operations, and an optimized hash module for the SHA-3 variants integral to ML-KEM. Additionally, the design introduces an efficient timing diagram and conflict-free memory management strategy, enabling seamless parallelism and reducing execution time while minimizing hardware resource consumption. Furthermore, the implementation incorporates several methods to effectively mitigate side-channel attacks, a common concern in hardware-based cryptosystem deployments. The proposed architecture is validated through implementation on an Artix-7 FPGA and Synopsys 14nm ASIC technology. Compared to state-of-the-art designs, our approach demonstrates superior performance while maintaining comparable hardware resource efficiency. Specifically, the hardware implementation on the Xilinx Artix-7 utilizes 12k LUTs, 6.9k FFs, 4 DSPs, and 9 BRAMs at clock frequency of 220 MHz.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"356-369"},"PeriodicalIF":2.4,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144893917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuntao Han;Yihan Pan;Xiongfei Jiang;Cristian Sestito;Shady Agwa;Themis Prodromakis;Shiwei Wang
{"title":"L-Sort: On-Chip Spike Sorting With Efficient Median-of-Median Detection and Localization-Based Clustering","authors":"Yuntao Han;Yihan Pan;Xiongfei Jiang;Cristian Sestito;Shady Agwa;Themis Prodromakis;Shiwei Wang","doi":"10.1109/OJCAS.2025.3584317","DOIUrl":"https://doi.org/10.1109/OJCAS.2025.3584317","url":null,"abstract":"Spike sorting is a critical process for decoding large-scale neural activity from extracellular recordings. The advancement of neural probes facilitates the recording of a high number of neurons with an increase in channel counts, arising a higher data volume and challenging the current on-chip spike sorters. This paper introduces L-Sort, a novel on-chip spike sorting solution featuring median-of-median spike detection and localization-based clustering. By combining the median-of-median approximation and the proposed incremental median calculation scheme, our detection module achieves a reduction in memory consumption. Moreover, the localization-based clustering utilizes geometric features instead of morphological features, thus eliminating the memory-consuming buffer for containing the spike waveform during feature extraction. Evaluation using Neuropixels datasets demonstrates that L-Sort achieves competitive sorting accuracy with reduced hardware resource consumption. Implementations on FPGA and ASIC (180 nm technology) demonstrate significant improvements in area and power efficiency compared to state-of-the-art designs while maintaining comparable accuracy. If normalized to 22 nm technology, our design can achieve roughly <inline-formula> <tex-math>$times 10$ </tex-math></inline-formula> area and power efficiency with similar accuracy, compared with the state-of-the-art design evaluated with the same dataset. Therefore, L-Sort is a promising solution for real-time, high-channel-count neural processing in implantable devices.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"205-216"},"PeriodicalIF":2.4,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BAG3++: An Extensible Generator Framework for Automated Layout-Aware AMS Design","authors":"Felicia Guo;Bob Zhou;Ayan Biswas;Paul Kwon;Zhaokai Liu;Ken Ho;Vladimir Stojanović;Borivoje Nikolić","doi":"10.1109/OJCAS.2024.3502641","DOIUrl":"https://doi.org/10.1109/OJCAS.2024.3502641","url":null,"abstract":"We present BAG<inline-formula> <tex-math>$3{++}$ </tex-math></inline-formula>, an extensible analog/mixed-signal (AMS) design framework for layout-aware design. BAG<inline-formula> <tex-math>$3{++}$ </tex-math></inline-formula> realizes a unified design environment that merges schematic, layout, and verification views into a single development interface. We further introduce new automated design features that enable rapid automation and optimization across a range of performance specifications, processes, and applications. We demonstrate the practical use of these features through (a) a bit-reconfigurable successive-approximation-register (SAR) analog-to-digital converter (ADC) implemented in the open-source Skywater 130nm process and (b) an ultra-high speed output driver optimized in two modern processes. BAG<inline-formula> <tex-math>$3{++}$ </tex-math></inline-formula> interfaces with both commercial and open-source design frameworks, and the extensibility of BAG<inline-formula> <tex-math>$3{++}$ </tex-math></inline-formula> is further illustrated through the integration of an open-source simulator.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"181-191"},"PeriodicalIF":2.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifei Zhu;Zhenxuan Luan;Dawei Feng;Weiwei Chen;Lei Ren;Zhangxi Tan
{"title":"Revolutionize 3D-Chip Design With Open3DFlow, an Open-Source AI-Enhanced Solution","authors":"Yifei Zhu;Zhenxuan Luan;Dawei Feng;Weiwei Chen;Lei Ren;Zhangxi Tan","doi":"10.1109/OJCAS.2024.3518754","DOIUrl":"https://doi.org/10.1109/OJCAS.2024.3518754","url":null,"abstract":"The escalating demand for high-performance and energy-efficient electronics has propelled 3D integrated circuits (3D ICs) as a promising solution. However, major obstacles have been the lack of specialized electronic design automation (EDA) software and standardized design flows for 3D chiplets. To bridge the gap, we introduce Open3DFlow,<xref>1</xref> an open-source design platform for 3D ICs. It is a seven-step workflow that incorporates essential ASIC back-end processes while supporting multi-physics analysis, such as through silicon via (TSV) modeling, thermal analysis, and signal integrity (SI) evaluations. To illustrate all functionalities of <italic>Open3DFlow</i>, we use it to implement a 3D RISC-V CPU design with a vertically stacked L2 cache on a separated die. We harden both CPU logic and 3D-cache die in a GlobalFoundries <inline-formula> <tex-math>$0.18mu $ </tex-math></inline-formula>m (GF180) process with open-source PDK support. We enable face-to-face (F2F) coupling of the top and bottom die by constructing a bonding layer based on the original technology file. <italic>Open3DFlow</i>’s open-source nature allows seamless integration of custom AI optimization algorithms. As a showcase, we leverage large language models (LLMs) to help the bonding pad placement. In addition, we apply LLM on back-end Tcl script generations to improve design productivity. We expect <italic>Open3DFlow</i> to open up a brand-new paradigm for future 3D IC innovations.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"169-180"},"PeriodicalIF":2.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11052893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}