Biologically-Inspired, Ultra-Low Power, and High-Speed Integrate-and-Fire Neuron Circuit With Stochastic Behavior Using Nanoscale Side-Contacted Field Effect Diode Technology

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Seyedmohamadjavad Motaman;Sarah S. Sharif;Yaser M. Banad
{"title":"Biologically-Inspired, Ultra-Low Power, and High-Speed Integrate-and-Fire Neuron Circuit With Stochastic Behavior Using Nanoscale Side-Contacted Field Effect Diode Technology","authors":"Seyedmohamadjavad Motaman;Sarah S. Sharif;Yaser M. Banad","doi":"10.1109/OJCAS.2025.3549442","DOIUrl":null,"url":null,"abstract":"Enhancing power efficiency and performance in neuromorphic computing systems is critical for next-generation artificial intelligence applications. We propose the Nanoscale Side-contacted Field Effect Diode (S-FED)—a novel solution that significantly lowers power usage and improves circuit speed—enabling efficient neuron circuit design. Our proposed integrate-and-fire (IF) neuron model demonstrates remarkable performance metrics: 44 nW power consumption (85% lower than current designs), 0.964 fJ energy per spike (36% improvement over state-of-the-art), and a spiking frequency ranging from 20 to 100 MHz. Moreover, we show how to bias the circuit to enable both deterministic and stochastic operation, mimicking key computational features of biological neurons. The stochastic behavior can be precisely controlled through reference voltage modulation, achieving firing probabilities from 0% to 100% and enabling probabilistic computing capabilities. The architecture exhibits robust stability across process (channel length and doping)-voltage-temperature (PVT) variations, maintaining consistent performance with less than 7% spike amplitude variation for channel lengths from 7.5nm to 15nm, doping from <inline-formula> <tex-math>$5\\times 10{^{{20}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^ - 3 $ </tex-math></inline-formula> to <inline-formula> <tex-math>$1\\times 10{^{{2}}} {^{{1}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>${}^ - 3 $ </tex-math></inline-formula>, supply voltages from 0.8V to 1.2V, and temperatures spanning −40°C to 120°C. The model features tunable thresholds (0.8V to 1.4V) and reliable operation across input spike pulse widths from 0.5 ns to 2 ns. This advancement in neuromorphic hardware paves the way for more efficient brain-inspired computing systems.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"217-227"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106515","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11106515/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing power efficiency and performance in neuromorphic computing systems is critical for next-generation artificial intelligence applications. We propose the Nanoscale Side-contacted Field Effect Diode (S-FED)—a novel solution that significantly lowers power usage and improves circuit speed—enabling efficient neuron circuit design. Our proposed integrate-and-fire (IF) neuron model demonstrates remarkable performance metrics: 44 nW power consumption (85% lower than current designs), 0.964 fJ energy per spike (36% improvement over state-of-the-art), and a spiking frequency ranging from 20 to 100 MHz. Moreover, we show how to bias the circuit to enable both deterministic and stochastic operation, mimicking key computational features of biological neurons. The stochastic behavior can be precisely controlled through reference voltage modulation, achieving firing probabilities from 0% to 100% and enabling probabilistic computing capabilities. The architecture exhibits robust stability across process (channel length and doping)-voltage-temperature (PVT) variations, maintaining consistent performance with less than 7% spike amplitude variation for channel lengths from 7.5nm to 15nm, doping from $5\times 10{^{{20}}}$ cm ${}^ - 3 $ to $1\times 10{^{{2}}} {^{{1}}}$ cm ${}^ - 3 $ , supply voltages from 0.8V to 1.2V, and temperatures spanning −40°C to 120°C. The model features tunable thresholds (0.8V to 1.4V) and reliable operation across input spike pulse widths from 0.5 ns to 2 ns. This advancement in neuromorphic hardware paves the way for more efficient brain-inspired computing systems.
利用纳米级侧接触场效应二极管技术实现具有随机行为的生物启发、超低功耗、高速集成-发射神经元电路
提高神经形态计算系统的功率效率和性能对于下一代人工智能应用至关重要。我们提出了纳米级侧接触场效应二极管(S-FED),这是一种新颖的解决方案,可显着降低功耗并提高电路速度,从而实现高效的神经元电路设计。我们提出的IF神经元模型展示了卓越的性能指标:44 nW功耗(比当前设计低85%),每尖峰能量0.964 fJ(比最先进的技术提高36%),尖峰频率范围从20到100 MHz。此外,我们展示了如何偏置电路以实现确定性和随机操作,模拟生物神经元的关键计算特征。通过参考电压调制可以精确控制随机行为,实现从0%到100%的发射概率,并实现概率计算能力。该架构在整个过程(通道长度和掺杂)电压温度(PVT)变化中表现出强大的稳定性,在通道长度从7.5nm到15nm,掺杂从$5\乘以10{^{{20}}}$ cm ${}^ - 3 $到$1\乘以10{^{{2}}}{^{{1}}}$ cm ${}}^ - 3 $,电源电压从0.8V到1.2V,温度范围从- 40°C到120°C时,保持稳定的性能,峰值幅度变化小于7%。该模型具有可调阈值(0.8V至1.4V)和可靠的工作跨越输入尖峰脉冲宽度从0.5 ns到2 ns。神经形态硬件的这一进步为更高效的大脑启发计算系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信