ML-KEM PQC标准的高效硬件架构

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Haesung Jung;Quang Dang Truong;Hanho Lee
{"title":"ML-KEM PQC标准的高效硬件架构","authors":"Haesung Jung;Quang Dang Truong;Hanho Lee","doi":"10.1109/OJCAS.2025.3591136","DOIUrl":null,"url":null,"abstract":"The advent of quantum computers, with their immense computational potential, poses significant threats to traditional cryptographic systems. In response, NIST announced the quantum-resistant Module Lattice-based Key Encapsulation Mechanism (ML-KEM) standard in 2024. This paper presents an efficient hardware architecture for the ML-KEM scheme, capable of supporting all algorithms and flexibly adapting to different security levels. The proposed design achieves a balance between high performance and low hardware resource consumption, making it suitable for deployment across various FPGA platforms. Key innovations include the Unified Polynomial Arithmetic Module (UniPAM), capable of handling all polynomial arithmetic operations, and an optimized hash module for the SHA-3 variants integral to ML-KEM. Additionally, the design introduces an efficient timing diagram and conflict-free memory management strategy, enabling seamless parallelism and reducing execution time while minimizing hardware resource consumption. Furthermore, the implementation incorporates several methods to effectively mitigate side-channel attacks, a common concern in hardware-based cryptosystem deployments. The proposed architecture is validated through implementation on an Artix-7 FPGA and Synopsys 14nm ASIC technology. Compared to state-of-the-art designs, our approach demonstrates superior performance while maintaining comparable hardware resource efficiency. Specifically, the hardware implementation on the Xilinx Artix-7 utilizes 12k LUTs, 6.9k FFs, 4 DSPs, and 9 BRAMs at clock frequency of 220 MHz.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"356-369"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088254","citationCount":"0","resultStr":"{\"title\":\"Highly-Efficient Hardware Architecture for ML-KEM PQC Standard\",\"authors\":\"Haesung Jung;Quang Dang Truong;Hanho Lee\",\"doi\":\"10.1109/OJCAS.2025.3591136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of quantum computers, with their immense computational potential, poses significant threats to traditional cryptographic systems. In response, NIST announced the quantum-resistant Module Lattice-based Key Encapsulation Mechanism (ML-KEM) standard in 2024. This paper presents an efficient hardware architecture for the ML-KEM scheme, capable of supporting all algorithms and flexibly adapting to different security levels. The proposed design achieves a balance between high performance and low hardware resource consumption, making it suitable for deployment across various FPGA platforms. Key innovations include the Unified Polynomial Arithmetic Module (UniPAM), capable of handling all polynomial arithmetic operations, and an optimized hash module for the SHA-3 variants integral to ML-KEM. Additionally, the design introduces an efficient timing diagram and conflict-free memory management strategy, enabling seamless parallelism and reducing execution time while minimizing hardware resource consumption. Furthermore, the implementation incorporates several methods to effectively mitigate side-channel attacks, a common concern in hardware-based cryptosystem deployments. The proposed architecture is validated through implementation on an Artix-7 FPGA and Synopsys 14nm ASIC technology. Compared to state-of-the-art designs, our approach demonstrates superior performance while maintaining comparable hardware resource efficiency. Specifically, the hardware implementation on the Xilinx Artix-7 utilizes 12k LUTs, 6.9k FFs, 4 DSPs, and 9 BRAMs at clock frequency of 220 MHz.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":\"6 \",\"pages\":\"356-369\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11088254/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11088254/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机的出现,以其巨大的计算潜力,对传统的密码系统构成了重大威胁。作为回应,NIST在2024年宣布了抗量子模块晶格密钥封装机制(ML-KEM)标准。本文提出了一种高效的ML-KEM方案硬件架构,能够支持所有算法,并灵活适应不同的安全级别。提出的设计实现了高性能和低硬件资源消耗之间的平衡,使其适合在各种FPGA平台上部署。关键的创新包括能够处理所有多项式算术运算的统一多项式算术模块(UniPAM),以及用于ML-KEM中不可分割的SHA-3变体的优化哈希模块。此外,该设计还引入了高效的时序图和无冲突的内存管理策略,支持无缝并行并减少执行时间,同时最大限度地减少硬件资源消耗。此外,该实现结合了几种方法来有效减轻侧信道攻击,这是基于硬件的密码系统部署中常见的问题。通过在Artix-7 FPGA和Synopsys 14nm ASIC技术上的实现,验证了所提出的架构。与最先进的设计相比,我们的方法在保持相当的硬件资源效率的同时展示了卓越的性能。具体来说,Xilinx Artix-7上的硬件实现在220 MHz时钟频率下使用12k lut, 6.9k ff, 4个dsp和9个bram。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly-Efficient Hardware Architecture for ML-KEM PQC Standard
The advent of quantum computers, with their immense computational potential, poses significant threats to traditional cryptographic systems. In response, NIST announced the quantum-resistant Module Lattice-based Key Encapsulation Mechanism (ML-KEM) standard in 2024. This paper presents an efficient hardware architecture for the ML-KEM scheme, capable of supporting all algorithms and flexibly adapting to different security levels. The proposed design achieves a balance between high performance and low hardware resource consumption, making it suitable for deployment across various FPGA platforms. Key innovations include the Unified Polynomial Arithmetic Module (UniPAM), capable of handling all polynomial arithmetic operations, and an optimized hash module for the SHA-3 variants integral to ML-KEM. Additionally, the design introduces an efficient timing diagram and conflict-free memory management strategy, enabling seamless parallelism and reducing execution time while minimizing hardware resource consumption. Furthermore, the implementation incorporates several methods to effectively mitigate side-channel attacks, a common concern in hardware-based cryptosystem deployments. The proposed architecture is validated through implementation on an Artix-7 FPGA and Synopsys 14nm ASIC technology. Compared to state-of-the-art designs, our approach demonstrates superior performance while maintaining comparable hardware resource efficiency. Specifically, the hardware implementation on the Xilinx Artix-7 utilizes 12k LUTs, 6.9k FFs, 4 DSPs, and 9 BRAMs at clock frequency of 220 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信