Lin Yang,Pan Ji,Abel A Miranda Buzetta,Haolin Li,Matthew R Lockett,Haibo Zhou,Amy L Oldenburg
{"title":"Longitudinal tracking of perfluorooctanoic acid exposure on mammary epithelial cell spheroids by dynamic optical coherence tomography.","authors":"Lin Yang,Pan Ji,Abel A Miranda Buzetta,Haolin Li,Matthew R Lockett,Haibo Zhou,Amy L Oldenburg","doi":"10.1364/boe.530775","DOIUrl":"https://doi.org/10.1364/boe.530775","url":null,"abstract":"We investigated the morphology and intracellular motility of mammary epithelial cell (MCF10DCIS.com) spheroids cultured in 3D artificial extracellular matrix under perfluorooctanoic acid (PFOA) exposure. Dynamic optical coherence tomography (OCT) was employed for real-time, non-invasive imaging of these spheroids longitudinally over 12 days under PFOA exposures up to 500 µM. Despite no significant changes in volume or asphericity of spheroids, morphological alterations were observed in OCT images of spheroids at 100 µM on Day 12 and from Day 4 at 500 µM. Intracellular motility was assessed by the inverse-power-law exponent of the speckle fluctuation spectrum (α), and an autocorrelation-based motility amplitude (M). Linear regression indicated that both PFOA concentration and culture time are highly significant predictors for both α and M (p < 0.001 for all). Both PFOA concentration and culture time have positive associations with α and negative association with M, where increased α indicates suppression of higher frequency fluctuations (∼> 2 Hz) relative to those at lower frequencies, and decreased M indicates overall suppression of intracellular motility. This study can lead to the future development of biomarkers for per- and polyfluoroalkyl substances (PFAS) exposure using dynamic OCT and its associated toolkit of quantitative metrics.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"107 1","pages":"5115-5127"},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Mireles, Edward Xu, Rahul Ragunathan, Qianqian Fang
{"title":"Medium-adaptive compressive diffuse optical tomography.","authors":"Miguel Mireles, Edward Xu, Rahul Ragunathan, Qianqian Fang","doi":"10.1364/BOE.529195","DOIUrl":"https://doi.org/10.1364/BOE.529195","url":null,"abstract":"<p><p>The low spatial resolution of diffuse optical tomography (DOT) has motivated the development of high-density DOT systems utilizing spatially-encoded illumination and detection strategies. Data compression methods, through the application of Fourier or Hadamard patterns, have been commonly explored for both illumination and detection but were largely limited to pre-determined patterns regardless of imaging targets. Here, we show that target-optimized detection patterns can yield significantly improved DOT reconstructions in both <i>in silico</i> and experimental tests. Applying reciprocity, we can further iteratively optimize both illumination and detection patterns and show that these simultaneously optimized source/detection patterns outperform predetermined patterns in simulation settings. In addition, we show media-adaptive measurement data compression methods enable wide-field DOT systems to recover highly complex inclusions inside optically-thick media with reduced background artifacts. Furthermore, using truncated optimized patterns shows an improvement of 2-4× in increased speed of data acquisition and reconstruction without significantly losing image quality. The proposed method can be readily extended for additional data dimensions such as spectrum and time.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 9","pages":"5128-5142"},"PeriodicalIF":2.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alankrit Tomar, Shaun A Engelmann, Aaron L Woods, Andrew K Dunn
{"title":"Non-degenerate two-photon imaging of deep rodent cortex using indocyanine green in the water absorption window.","authors":"Alankrit Tomar, Shaun A Engelmann, Aaron L Woods, Andrew K Dunn","doi":"10.1364/BOE.520977","DOIUrl":"https://doi.org/10.1364/BOE.520977","url":null,"abstract":"<p><p>We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two excitation sources with temporally overlapped pulses at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate <i>in vivo</i> imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 9","pages":"5053-5066"},"PeriodicalIF":2.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weakly supervised semantic segmentation of leukocyte images based on class activation maps.","authors":"Rui Feng,Wei Chen,Jie Qi","doi":"10.1364/boe.525294","DOIUrl":"https://doi.org/10.1364/boe.525294","url":null,"abstract":"Leukocytes are an essential component of the human defense system, accurate segmentation of leukocyte images is a crucial step towards automating detection. Most existing methods for leukocyte images segmentation relied on fully supervised semantic segmentation (FSSS) with extensive pixel-level annotations, which are time-consuming and labor-intensive. To address this issue, this paper proposes a weakly supervised semantic segmentation (WSSS) approach for leukocyte images utilizing improved class activation maps (CAMs). Firstly, to alleviate ambiguous boundary problem between leukocytes and background, preprocessing technique is employed to enhance the image quality. Secondly, attention mechanism is added to refine the CAMs generated by improving the matching of local and global features. Random walks, dense conditional random fields and hole filling were leveraged to obtain final pseudo-segmentation labels. Finally, a fully supervised segmentation network is trained with pseudo-segmentation labels. The method is evaluated on BCCD and TMAMD datasets. Experimental results demonstrate that by employing the pseudo segmentation annotations generated through this method can be utilized to train UNet as close as possible to FSSS. This method effectively reduces manual annotation cost while achieving WSSS of leukocyte images.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"53 1","pages":"5067-5080"},"PeriodicalIF":3.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D super-resolution optical fluctuation imaging with temporal focusing two-photon excitation.","authors":"Pawel Szczypkowski, Monika Pawlowska, Radek Lapkiewicz","doi":"10.1364/BOE.523430","DOIUrl":"10.1364/BOE.523430","url":null,"abstract":"<p><p>3D super-resolution fluorescence microscopy typically requires sophisticated setups, sample preparation, or long measurements. A notable exception, SOFI, only requires recording a sequence of frames and no hardware modifications whatsoever but being a wide-field method, it faces problems in thick, dense samples. We combine SOFI with temporal focusing two-photon excitation - the wide-field method that is capable of exciting a thin slice in 3D volume. Temporal focusing is simple to implement whenever the excitation path of the microscope can be accessed. The implementation of SOFI is straightforward. By merging these two methods, we obtain super-resolved 3D images of neurons stained with quantum dots. Our approach offers reduced bleaching of out-of-focus fluorescent probes and an improved signal-to-background ratio that can be used when robust resolution improvement is required in thick, dense samples.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 7","pages":"4381-4389"},"PeriodicalIF":2.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conor Mcfadden, Zach Marin, Bingying Chen, Stephan Daetwyler, Xiaoding Wang, Divya Rajendran, Kevin M. Dean, Reto Fiolka
{"title":"Adaptive optics in an oblique plane microscope","authors":"Conor Mcfadden, Zach Marin, Bingying Chen, Stephan Daetwyler, Xiaoding Wang, Divya Rajendran, Kevin M. Dean, Reto Fiolka","doi":"10.1364/boe.524013","DOIUrl":"https://doi.org/10.1364/boe.524013","url":null,"abstract":"Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers <jats:italic toggle=\"yes\">in vivo</jats:italic> and <jats:italic toggle=\"yes\">in vitro</jats:italic>, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"51 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Furu Zhang, Katherine Kovalick, Achyut Raghavendra, Somayyeh Soltanian-Zadeh, Sina Farsiu, Daniel X. Hammer, Zhuolin Liu
{"title":"In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics","authors":"Furu Zhang, Katherine Kovalick, Achyut Raghavendra, Somayyeh Soltanian-Zadeh, Sina Farsiu, Daniel X. Hammer, Zhuolin Liu","doi":"10.1364/boe.533249","DOIUrl":"https://doi.org/10.1364/boe.533249","url":null,"abstract":"Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"76 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes D. Johansson, Martin Hultman, Rolf Saager
{"title":"Coagulation depth estimation using a line scanner for depth-resolved laser speckle contrast imaging","authors":"Johannes D. Johansson, Martin Hultman, Rolf Saager","doi":"10.1364/boe.529043","DOIUrl":"https://doi.org/10.1364/boe.529043","url":null,"abstract":"Partial-thickness burn wounds extend partially through the dermis, leaving many pain receptors intact and making the injuries very painful. Due to the painfulness, quick assessment of the burn depth is important to not delay surgery of the wound if needed. Laser speckle imaging (LSI) of skin blood flow can be helpful in finding severe coagulation zones with impaired blood flow. However, LSI measurements are typically too superficial to properly reach the full depth of the adult dermis and cannot resolve the flow in depth. Diffuse correlation spectroscopy (DCS) uses varying source-detector separations to allow differentiation of flow depths but requires time-consuming 2D scanning to form an image of the burn area. We here present a prototype for a hybrid DCS and LSI technique called speckle contrast diffuse correlation spectroscopy (scDCS) with the novel approach of using a laser line as a source and using the speckle contrast of averaged images to obtain an estimate of static scattering in the tissue. This will allow for fast non-contact 1D scanning to perform 3D tomographic imaging, making quantitative estimates of the depth and area of the coagulation zone from burn wounds. Simulations and experimental results from a volumetric flow phantom and a gelatin wedge phantom show promise to determine coagulation depth. The aim is to develop a method that, in the future, could provide more quantitative estimates of coagulation depth in partial thickness burn wounds to better estimate when surgery is needed.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"151 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring of neoadjuvant chemotherapy through time domain diffuse optics: breast tissue composition changes and collagen discriminative potential","authors":"Nikhitha Mule, Giulia Maffeis, Rinaldo Cubeddu, Carolina Santangelo, Giampaolo Bianchini, Pietro Panizza, Paola Taroni","doi":"10.1364/boe.527968","DOIUrl":"https://doi.org/10.1364/boe.527968","url":null,"abstract":"The purpose of this clinical study is to test a broad spectral range (635-1060 nm) time-domain diffuse optical spectroscopy in monitoring the response of breast cancer patients to neoadjuvant chemotherapy (NAC). The broadband operation allows us to fully analyze tissue composition in terms of hemoglobin, water, lipids and collagen concentration, which has never been systematically studied until now during the course of therapy. Patients are subjected to multiple breast optical imaging sessions, each one performed at different stages of NAC, both on tumor-bearing and contralateral healthy breasts. We correlate the optical results with conventional imaging techniques and pathological response. Preliminary outcomes on 10 patients’ data show an average significant reduction in the concentrations of oxy-hemoglobin (-53%, <jats:italic>p</jats:italic> = 0.0020), collagen (-36%, <jats:italic>p</jats:italic> = 0.0039) and water (-15%, <jats:italic>p</jats:italic> = 0.0195), and increase in lipids (+39%, <jats:italic>p</jats:italic> = 0.0137) from baseline to the end of therapy in the tumor-bearing breast of patients who responded to therapy at least partially. With respect to scattering, the scattering amplitude, <jats:italic>a</jats:italic>, increases slightly (+15%, <jats:italic>p</jats:italic> = 0.0039) by the end of the therapy compared to the baseline, while the scattering slope, <jats:italic>b</jats:italic>, shows no significant change (+4%, <jats:italic>p</jats:italic> = 0.9219). Some change in the constituents’ concentrations was also noticed in the contralateral healthy breast, even though it was significant only for oxy-hemoglobin concentration. We observed that collagen seems to be the only component distinguishing between complete and partial responders by the end of 2-3 weeks from the baseline. In the complete responder group, collagen significantly decreased after 2-3 weeks with respect to baseline (p = 0.0423). While the partial responder group also showed a decrease, it did not reach statistical significance (p = 0.1012). This suggests that collagen could serve as a potential biomarker to measure NAC effectiveness early during treatment. Even though obtained on a small group of patients, these initial results are consistent with those of standard medical modalities and highlight the sensitivity of the technique to changes that occur in breast composition during NAC.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"14 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography.","authors":"Haoran Zhang, Chengfu Gu, Qi Lan, Weiyi Zhang, Chang Liu, Jianlong Yang","doi":"10.1364/BOE.528522","DOIUrl":"10.1364/BOE.528522","url":null,"abstract":"<p><p>Proximal rotary scanning is predominantly used in the clinical practice of endoscopic and intravascular OCT, mainly because of the much lower manufacturing cost of the probe compared to distal scanning. However, proximal scanning causes severe beam stability issues (also known as non-uniform rotational distortion, NURD), which hinders the extension of its applications to functional imaging, such as OCT elastography (OCE). In this work, we demonstrate the abilities of learning-based NURD correction methods to enable the imaging stability required for intensity-based OCE. Compared with the previous learning-based NURD correction methods that use pseudo distortion vectors for model training, we propose a method to extract real distortion vectors from a specific endoscopic OCT system, and validate its superiority in accuracy under both convolutional-neural-network- and transformer-based learning architectures. We further verify its effectiveness in elastography calculations (digital image correlation and optical flow) and the advantages of our method over other NURD correction methods. Using the air pressure of a balloon catheter as a mechanical stimulus, our proximal-scanning endoscopic OCE could effectively differentiate between areas of varying stiffness of atherosclerotic vascular phantoms. Compared with the existing endoscopic OCE methods that measure only in the radial direction, our method could achieve 2D displacement/strain distribution in both radial and circumferential directions.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 7","pages":"4345-4364"},"PeriodicalIF":2.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}