Lightweight denoising speckle contrast image GAN for real-time denoising of laser speckle imaging of blood flow.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-20 eCollection Date: 2025-03-01 DOI:10.1364/BOE.545628
Xu Sang, Ruixi Cao, Liushuan Niu, Bin Chen, Dong Li, Qiang Li
{"title":"Lightweight denoising speckle contrast image GAN for real-time denoising of laser speckle imaging of blood flow.","authors":"Xu Sang, Ruixi Cao, Liushuan Niu, Bin Chen, Dong Li, Qiang Li","doi":"10.1364/BOE.545628","DOIUrl":null,"url":null,"abstract":"<p><p>To tackle real-time denoising of noisy laser speckle blood flow images, a novel lightweight denoising speckle contrast image generative adversarial network (LDSCI-GAN) is proposed. In the framework, a lightweight denoiser removes noise from the original image, and a discriminator compares the denoised result with the reference one, enabling efficient learning and optimization of the denoising process. With a multi-scale loss function in the log-transformed domain, the training process significantly improves accuracy and denoising by using only five frames of raw speckle images while well-preserving the overall pixel distribution and vascular contours. Animal and phantom experimental results indicate that the LDSCI-GAN can eliminate vascular artifacts while retaining the accuracy of relative blood flow velocity. In terms of peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and Pearson correlation coefficient (R), the LDSCI-GAN outperforms other deep-learning methods by 3.07 dB, 0.10 (<i>p </i>< 0.001), and 0.09 (<i>p</i> = 0.023), respectively. It has been successfully applied to the real-time monitoring of laser-induced thrombosis. Through conducting tests on the denoising performance of blood flow images of a moving subject, our proposed method achieved enhancements of 23.6% in PSNR, 30% in MSSIM, and 6.5% in the metric R, respectively, when compared to DRSNet. This means that the LDSCI-GAN also shows possible application in handheld devices, offering a potent tool for investigating blood flow and thrombosis dynamics more efficiently and conveniently.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1118-1142"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545628","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

To tackle real-time denoising of noisy laser speckle blood flow images, a novel lightweight denoising speckle contrast image generative adversarial network (LDSCI-GAN) is proposed. In the framework, a lightweight denoiser removes noise from the original image, and a discriminator compares the denoised result with the reference one, enabling efficient learning and optimization of the denoising process. With a multi-scale loss function in the log-transformed domain, the training process significantly improves accuracy and denoising by using only five frames of raw speckle images while well-preserving the overall pixel distribution and vascular contours. Animal and phantom experimental results indicate that the LDSCI-GAN can eliminate vascular artifacts while retaining the accuracy of relative blood flow velocity. In terms of peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and Pearson correlation coefficient (R), the LDSCI-GAN outperforms other deep-learning methods by 3.07 dB, 0.10 (p < 0.001), and 0.09 (p = 0.023), respectively. It has been successfully applied to the real-time monitoring of laser-induced thrombosis. Through conducting tests on the denoising performance of blood flow images of a moving subject, our proposed method achieved enhancements of 23.6% in PSNR, 30% in MSSIM, and 6.5% in the metric R, respectively, when compared to DRSNet. This means that the LDSCI-GAN also shows possible application in handheld devices, offering a potent tool for investigating blood flow and thrombosis dynamics more efficiently and conveniently.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信