Xu Sang, Ruixi Cao, Liushuan Niu, Bin Chen, Dong Li, Qiang Li
{"title":"Lightweight denoising speckle contrast image GAN for real-time denoising of laser speckle imaging of blood flow.","authors":"Xu Sang, Ruixi Cao, Liushuan Niu, Bin Chen, Dong Li, Qiang Li","doi":"10.1364/BOE.545628","DOIUrl":null,"url":null,"abstract":"<p><p>To tackle real-time denoising of noisy laser speckle blood flow images, a novel lightweight denoising speckle contrast image generative adversarial network (LDSCI-GAN) is proposed. In the framework, a lightweight denoiser removes noise from the original image, and a discriminator compares the denoised result with the reference one, enabling efficient learning and optimization of the denoising process. With a multi-scale loss function in the log-transformed domain, the training process significantly improves accuracy and denoising by using only five frames of raw speckle images while well-preserving the overall pixel distribution and vascular contours. Animal and phantom experimental results indicate that the LDSCI-GAN can eliminate vascular artifacts while retaining the accuracy of relative blood flow velocity. In terms of peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and Pearson correlation coefficient (R), the LDSCI-GAN outperforms other deep-learning methods by 3.07 dB, 0.10 (<i>p </i>< 0.001), and 0.09 (<i>p</i> = 0.023), respectively. It has been successfully applied to the real-time monitoring of laser-induced thrombosis. Through conducting tests on the denoising performance of blood flow images of a moving subject, our proposed method achieved enhancements of 23.6% in PSNR, 30% in MSSIM, and 6.5% in the metric R, respectively, when compared to DRSNet. This means that the LDSCI-GAN also shows possible application in handheld devices, offering a potent tool for investigating blood flow and thrombosis dynamics more efficiently and conveniently.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1118-1142"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545628","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To tackle real-time denoising of noisy laser speckle blood flow images, a novel lightweight denoising speckle contrast image generative adversarial network (LDSCI-GAN) is proposed. In the framework, a lightweight denoiser removes noise from the original image, and a discriminator compares the denoised result with the reference one, enabling efficient learning and optimization of the denoising process. With a multi-scale loss function in the log-transformed domain, the training process significantly improves accuracy and denoising by using only five frames of raw speckle images while well-preserving the overall pixel distribution and vascular contours. Animal and phantom experimental results indicate that the LDSCI-GAN can eliminate vascular artifacts while retaining the accuracy of relative blood flow velocity. In terms of peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and Pearson correlation coefficient (R), the LDSCI-GAN outperforms other deep-learning methods by 3.07 dB, 0.10 (p < 0.001), and 0.09 (p = 0.023), respectively. It has been successfully applied to the real-time monitoring of laser-induced thrombosis. Through conducting tests on the denoising performance of blood flow images of a moving subject, our proposed method achieved enhancements of 23.6% in PSNR, 30% in MSSIM, and 6.5% in the metric R, respectively, when compared to DRSNet. This means that the LDSCI-GAN also shows possible application in handheld devices, offering a potent tool for investigating blood flow and thrombosis dynamics more efficiently and conveniently.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.