Xiaopeng Wang, Di Gong, Yi Chen, Zheng Zong, Meng Li, Kun Fan, Lina Jia, Qiyuan Cao, Qiang Liu, Qiang Yang
{"title":"Hybrid CNN-Mamba model for multi-scale fundus image enhancement.","authors":"Xiaopeng Wang, Di Gong, Yi Chen, Zheng Zong, Meng Li, Kun Fan, Lina Jia, Qiyuan Cao, Qiang Liu, Qiang Yang","doi":"10.1364/BOE.542471","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1104-1117"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.