Visual simulation of intraocular lenses: technologies and applications [Invited].

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-13 eCollection Date: 2025-03-01 DOI:10.1364/BOE.546971
Susana Marcos, Pablo Artal, Linda Lundström, Geunyoung Yoon
{"title":"Visual simulation of intraocular lenses: technologies and applications [Invited].","authors":"Susana Marcos, Pablo Artal, Linda Lundström, Geunyoung Yoon","doi":"10.1364/BOE.546971","DOIUrl":null,"url":null,"abstract":"<p><p>Cataract surgery requires selecting an intraocular lens (IOL), whose design affects visual outcomes. Traditional IOL evaluation relies on optical models and bench testing, but these methods fall short in simulating perceptual factors crucial to patient experience. Visual simulators, based on different principles including adaptive optics, temporal multiplexing or physical projection of the IOLs, now allow patients and clinicians to preview and compare different IOL designs preoperatively. By simulating real-world interactions of the eye's optics and the visual system with IOLs, these simulators enhance the patient decision-making process, enable personalized cataract surgery, and can aid in regulatory assessments of IOLs by incorporating pre-operative patient-reported visual outcomes. Visual simulators incorporate deformable mirrors, spatial light modulators and optotunable lenses as dynamic elements to simulate monofocal, multifocal and extended depth-of-focus IOLs, including newer designs aimed at improving contrast sensitivity, expanding depth of focus, and minimizing visual disturbances. With ongoing advancements, these simulators hold potential for transforming IOL design, regulatory processes, and patient care by providing realistic and patient-centered visual assessments, ultimately leading to more successful, individualized surgical outcomes.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1025-1042"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.546971","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cataract surgery requires selecting an intraocular lens (IOL), whose design affects visual outcomes. Traditional IOL evaluation relies on optical models and bench testing, but these methods fall short in simulating perceptual factors crucial to patient experience. Visual simulators, based on different principles including adaptive optics, temporal multiplexing or physical projection of the IOLs, now allow patients and clinicians to preview and compare different IOL designs preoperatively. By simulating real-world interactions of the eye's optics and the visual system with IOLs, these simulators enhance the patient decision-making process, enable personalized cataract surgery, and can aid in regulatory assessments of IOLs by incorporating pre-operative patient-reported visual outcomes. Visual simulators incorporate deformable mirrors, spatial light modulators and optotunable lenses as dynamic elements to simulate monofocal, multifocal and extended depth-of-focus IOLs, including newer designs aimed at improving contrast sensitivity, expanding depth of focus, and minimizing visual disturbances. With ongoing advancements, these simulators hold potential for transforming IOL design, regulatory processes, and patient care by providing realistic and patient-centered visual assessments, ultimately leading to more successful, individualized surgical outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信