Assessment of the general clinical condition and functional properties of the eyes of rabbits after THz irradiation.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-13 eCollection Date: 2025-03-01 DOI:10.1364/BOE.546147
Ekaterina Butikova, Kristina Krasner, Nikolay Kanygin, Elena Drobot, Irina Levchenko, Aleksandr Kichigin, Vasiliy Popik, Daria Kolomeyets, Olga Solovieva, Tatyana Tolstikova, Alina Alshevskaya, Evgeniy Zavyalov, Valeriy Chernykh, Olga Poveshenko, Vladimir Kanygin
{"title":"Assessment of the general clinical condition and functional properties of the eyes of rabbits after THz irradiation.","authors":"Ekaterina Butikova, Kristina Krasner, Nikolay Kanygin, Elena Drobot, Irina Levchenko, Aleksandr Kichigin, Vasiliy Popik, Daria Kolomeyets, Olga Solovieva, Tatyana Tolstikova, Alina Alshevskaya, Evgeniy Zavyalov, Valeriy Chernykh, Olga Poveshenko, Vladimir Kanygin","doi":"10.1364/BOE.546147","DOIUrl":null,"url":null,"abstract":"<p><p>THz radiation is increasingly used for diagnostics in medicine. As technology utilizing THz radiation continues to develop rapidly, it is becoming increasingly important to consider its biological effects and establish safe exposure standards and parameters. The paper presents data on the clinical status and functional properties of the anterior and posterior structures of the eyes of rabbits after THz irradiation at the frequency of 2.3 THz. Terahertz radiation was generated at Novosibirsk Free Electron Laser (NovoFEL) at \"Siberian Synchrotron and Terahertz Radiation Centre\" (Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia). The exposure durations used were 15 and 30 minutes. Intensity ranges were I1=0.012 mW/cm<sup>2</sup>, I2=0.018 mW/cm<sup>2</sup>, and I3=0.024 mW/cm<sup>2</sup>. The study investigated the effects of various time and power irradiation protocols on the California rabbit's eyes and after a period of one month, but no significant clinical or functional alterations were observed in response to the established intensity protocols. However, the study identified statistically significant changes in corneal hydration and endothelial cell density over time, particularly under protocols with 15- and 30-minute exposures. A negative correlation was found between endothelial cell density and corneal thickness (r=-0.36, p=0.042), suggesting that a reduction in the endothelial cell pool may be associated with increased corneal thickness. These changes were subclinical and did not lead to clinically significant pathological changes in the cornea. There were no signs of ASOCT (anterior segment-optical coherence tomography) hyperreflectivity. THz radiation with parameters listed above of 2.3 THz and an intensities of 0.012-0.024 mW/cm<sup>2</sup> for 30 minutes has been shown to be conditionally safe for the structures of the rabbit eye. However, the detected subclinical corneal changes require further study to determine safe exposure limits.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1043-1061"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.546147","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

THz radiation is increasingly used for diagnostics in medicine. As technology utilizing THz radiation continues to develop rapidly, it is becoming increasingly important to consider its biological effects and establish safe exposure standards and parameters. The paper presents data on the clinical status and functional properties of the anterior and posterior structures of the eyes of rabbits after THz irradiation at the frequency of 2.3 THz. Terahertz radiation was generated at Novosibirsk Free Electron Laser (NovoFEL) at "Siberian Synchrotron and Terahertz Radiation Centre" (Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia). The exposure durations used were 15 and 30 minutes. Intensity ranges were I1=0.012 mW/cm2, I2=0.018 mW/cm2, and I3=0.024 mW/cm2. The study investigated the effects of various time and power irradiation protocols on the California rabbit's eyes and after a period of one month, but no significant clinical or functional alterations were observed in response to the established intensity protocols. However, the study identified statistically significant changes in corneal hydration and endothelial cell density over time, particularly under protocols with 15- and 30-minute exposures. A negative correlation was found between endothelial cell density and corneal thickness (r=-0.36, p=0.042), suggesting that a reduction in the endothelial cell pool may be associated with increased corneal thickness. These changes were subclinical and did not lead to clinically significant pathological changes in the cornea. There were no signs of ASOCT (anterior segment-optical coherence tomography) hyperreflectivity. THz radiation with parameters listed above of 2.3 THz and an intensities of 0.012-0.024 mW/cm2 for 30 minutes has been shown to be conditionally safe for the structures of the rabbit eye. However, the detected subclinical corneal changes require further study to determine safe exposure limits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信