多尺度眼底图像增强的CNN-Mamba混合模型。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-02-20 eCollection Date: 2025-03-01 DOI:10.1364/BOE.542471
Xiaopeng Wang, Di Gong, Yi Chen, Zheng Zong, Meng Li, Kun Fan, Lina Jia, Qiyuan Cao, Qiang Liu, Qiang Yang
{"title":"多尺度眼底图像增强的CNN-Mamba混合模型。","authors":"Xiaopeng Wang, Di Gong, Yi Chen, Zheng Zong, Meng Li, Kun Fan, Lina Jia, Qiyuan Cao, Qiang Liu, Qiang Yang","doi":"10.1364/BOE.542471","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1104-1117"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid CNN-Mamba model for multi-scale fundus image enhancement.\",\"authors\":\"Xiaopeng Wang, Di Gong, Yi Chen, Zheng Zong, Meng Li, Kun Fan, Lina Jia, Qiyuan Cao, Qiang Liu, Qiang Yang\",\"doi\":\"10.1364/BOE.542471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 3\",\"pages\":\"1104-1117\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.542471\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种将CNN与Mamba相结合的多尺度眼底图像增强方法,在多个基准测试中显示出明显的优势。该模型在公共数据集上始终保持最佳性能,具有最低的FID和KID分数,以及最高的PSNR和SSIM值,特别是在较大的图像分辨率上表现出色。值得注意的是,它的性能随着图像大小的增加而提高,有几个指标在1024 × 1024分辨率下达到最优值。尺度的可泛化性进一步凸显了该模型卓越的结构保存能力。此外,其在分割任务中的高VSD和IOU分数进一步验证了其实际有效性,使其成为增强眼底图像和提高诊断准确性的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid CNN-Mamba model for multi-scale fundus image enhancement.

This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信