Cristiano Glessi, Fabian A Polman, Cornelis W Hagen
{"title":"Water-assisted purification during electron beam-induced deposition of platinum and gold.","authors":"Cristiano Glessi, Fabian A Polman, Cornelis W Hagen","doi":"10.3762/bjnano.15.73","DOIUrl":"10.3762/bjnano.15.73","url":null,"abstract":"<p><p>Direct fabrication of pure metallic nanostructures is one of the main aims of focused electron beam-induced deposition (FEBID). It was recently achieved for gold deposits by the co-injection of a water precursor and the gold precursor Au(tfac)Me<sub>2</sub>. In this work results are reported, using the same approach, on a different gold precursor, Au(acac)Me<sub>2</sub>, as well as the frequently used platinum precursor MeCpPtMe<sub>3</sub>. As a water precursor MgSO<sub>4</sub>·7H<sub>2</sub>O was used. The purification during deposition led to a decrease of the carbon-to-gold ratio (in atom %) from 2.8 to 0.5 and a decrease of the carbon-to-platinum ratio (in atom %) from 6-7 to 0.2. The purification was done in a regular scanning electron microscope using commercially available components and chemicals, which paves the way for a broader application of direct etching-assisted FEBID to obtain pure metallic structures.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of age on the attachment ability of stick insects (Phasmatodea)","authors":"Marie Grote, Stanislav N. Gorb, Thies H. Büscher","doi":"10.3762/bjnano.15.72","DOIUrl":"https://doi.org/10.3762/bjnano.15.72","url":null,"abstract":"Many insect species have found their way into ageing research as small and easy-to-keep model organisms. A major sign of ageing is the loss of locomotory functions due to neuronal disorders or tissue wear. Soft and pliable attachment pads on the tarsi of insects adapt to the substrate texture to maximize their real contact area and, thereby, generate attachment during locomotion. In the majority of stick insects, adhesive microstructures covering those pads support attachment. Stick insects do not molt again after reaching the imaginal stage; hence, the cuticle of their pads is subject to continuous ageing. This study aims to quantify how attachment ability changes with age in the stick insect Sungaya aeta Hennemann, 2023 and elucidate the age effects on the material and microstructure of the attachment apparatus. Attachment performance (adhesion and friction forces) on substrates with different roughnesses was compared between two different age groups, and the change of attachment performance was monitored extending over a larger time frame. Ageing effects on the morphology of the attachment pads and the autofluorescence of the cuticle were documented using light, scanning electron, and confocal laser scanning microscopy. The results show that both adhesion and friction forces decline with age. Deflation of the pads, scarring of the cuticle, and alteration of the autofluorescence, likely indicating stiffening of the cuticle, were observed to accumulate over time. This would reduce the attachment ability of the insect, as pads lose their pliant properties and cannot properly maintain sufficient contact area with the substrate.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvador Moncho, Eva Serrano-Candelas, Jesús Vicente de Julián-Ortiz, Rafael Gozalbes
{"title":"A review on the structural characterization of nanomaterials for nano-QSAR models.","authors":"Salvador Moncho, Eva Serrano-Candelas, Jesús Vicente de Julián-Ortiz, Rafael Gozalbes","doi":"10.3762/bjnano.15.71","DOIUrl":"10.3762/bjnano.15.71","url":null,"abstract":"<p><p>Quantitative structure-activity relationship (QSAR) models are routinely used to predict the properties and biological activity of chemicals to direct synthetic advances, perform massive screenings, and even to register new substances according to international regulations. Currently, nanoscale QSAR (nano-QSAR) models, adapting this methodology to predict the intrinsic features of nanomaterials (NMs) and quantitatively assess their risks, are blooming. One of the challenges is the characterization of the NMs. This cannot be done with a simple SMILES representation, as for organic molecules, because their chemical structure is complex, including several layers and many inorganic materials, and their size and geometry are key features. In this review, we survey the literature for existing predictive models for NMs and discuss the variety of calculated and experimental features used to define and describe NMs. In the light of this research, we propose a classification of the descriptors including those that directly describe a component of the nanoform (core, surface, or structure) and also experimental features (related to the nanomaterial's behavior, preparation, or test conditions) that indirectly reflect its structure.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation on drag reduction on rotating blade surfaces with microtextures.","authors":"Qinsong Zhu, Chen Zhang, Fuhang Yu, Yan Xu","doi":"10.3762/bjnano.15.70","DOIUrl":"10.3762/bjnano.15.70","url":null,"abstract":"<p><p>To enhance the aerodynamic performance of aero engine blades, simulations and experiments regarding microtextures to reduce the flow loss on the blade surfaces were carried out. First, based on the axisymmetric characteristics of the impeller, a new simulation method was proposed to determine the aerodynamic parameters of the blade model through the comparison of flow field characteristics and simulation results. Second, the placement position and geometrical parameters (height, width, and spacing) of microtextures with lower energy loss were determined by our simulation of microtextures on the blade surface, and the drag reduction mechanism was analyzed. Triangular ribs with a height of 0.2 mm, a width of 0.3 mm, and a spacing of 0.2 mm exhibited the best drag reduction, reducing the energy loss coefficient and drag by 1.45% and 1.31% for a single blade, respectively. Finally, the blades with the optimal microtexture parameters were tested in the wind tunnel. The experimental results showed that the microtexture decreased energy loss by 3.7% for a single blade under 57° angle of attack and 136.24 m/s, which was favorable regarding the drag reduction performance of the impeller with 45 blades.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Al Qaydi, Nitul S Rajput, Michael Lejeune, Abdellatif Bouchalkha, Mimoun El Marssi, Steevy Cordette, Chaouki Kasmi, Mustapha Jouiad
{"title":"Intermixing of MoS<sub>2</sub> and WS<sub>2</sub> photocatalysts toward methylene blue photodegradation.","authors":"Maryam Al Qaydi, Nitul S Rajput, Michael Lejeune, Abdellatif Bouchalkha, Mimoun El Marssi, Steevy Cordette, Chaouki Kasmi, Mustapha Jouiad","doi":"10.3762/bjnano.15.68","DOIUrl":"10.3762/bjnano.15.68","url":null,"abstract":"<p><p>Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS<sub>2</sub> and WS<sub>2</sub> prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS<sub>2</sub> exhibited the highest PD efficiency of 67.6% and achieved an impressive PD rate constant of 6.1 × 10<sup>-3</sup> min<sup>-1</sup>. Conversely, MoS<sub>2</sub> displayed a somewhat lower PD performance of 43.5% but demonstrated remarkable stability. The intriguing result of this study relies on the synergetic effect observed when both MoS<sub>2</sub> and WS<sub>2</sub> are combined in a ratio of 20% of MoS<sub>2</sub> and 80% of WS<sub>2</sub>. This precise blend resulted in an optimized PD efficiency and exceptional stability reaching 97% upon several cycles. This finding underscores the advantageous outcomes of intermixing WS<sub>2</sub> and MoS<sub>2</sub>, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria J Martínez-Carreón, Francisco Solís-Pomar, Abel Fundora, Claudio D Gutiérrez-Lazos, Sergio Mejía-Rosales, Hector N Fernández-Escamilla, Jonathan Guerrero-Sánchez, Manuel F Meléndrez, Eduardo Pérez-Tijerina
{"title":"Synthesis of silver-palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study.","authors":"Maria J Martínez-Carreón, Francisco Solís-Pomar, Abel Fundora, Claudio D Gutiérrez-Lazos, Sergio Mejía-Rosales, Hector N Fernández-Escamilla, Jonathan Guerrero-Sánchez, Manuel F Meléndrez, Eduardo Pérez-Tijerina","doi":"10.3762/bjnano.15.67","DOIUrl":"10.3762/bjnano.15.67","url":null,"abstract":"<p><p>Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hlib Lyshchuk, Atul Chaudhary, Thomas F M Luxford, Miloš Ranković, Jaroslav Kočišek, Juraj Fedor, Lisa McElwee-White, Pamir Nag
{"title":"Electron-induced ligand loss from iron tetracarbonyl methyl acrylate.","authors":"Hlib Lyshchuk, Atul Chaudhary, Thomas F M Luxford, Miloš Ranković, Jaroslav Kočišek, Juraj Fedor, Lisa McElwee-White, Pamir Nag","doi":"10.3762/bjnano.15.66","DOIUrl":"10.3762/bjnano.15.66","url":null,"abstract":"<p><p>We probe the separation of ligands from iron tetracarbonyl methyl acrylate (Fe(CO)<sub>4</sub>(C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>) or Fe(CO)<sub>4</sub>MA) induced by the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups and support the interpretation of data by quantum chemical calculations. This way, both the dissociative ionization and dissociative electron attachment fragmentation channels are characterized. Considerable differences in the degree of precursor fragmentation in these two channels are observed. Interesting differences also appear when this precursor is compared to structurally similar iron pentacarbonyl. The present findings shed light on the recent electron-induced chemistry of Fe(CO)<sub>4</sub>MA on a surface under ultrahigh vacuum.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronika Pálos, Krisztina S Nagy, Rita Pázmány, Krisztina Juriga-Tóth, Bálint Budavári, Judit Domokos, Dóra Szabó, Ákos Zsembery, Angela Jedlovszky-Hajdu
{"title":"Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material.","authors":"Veronika Pálos, Krisztina S Nagy, Rita Pázmány, Krisztina Juriga-Tóth, Bálint Budavári, Judit Domokos, Dóra Szabó, Ákos Zsembery, Angela Jedlovszky-Hajdu","doi":"10.3762/bjnano.15.65","DOIUrl":"10.3762/bjnano.15.65","url":null,"abstract":"<p><p>In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mario Navarro-Rodriguez, Andres M Somoza, Elisa Palacios-Lidon
{"title":"Exploring surface charge dynamics: implications for AFM height measurements in 2D materials.","authors":"Mario Navarro-Rodriguez, Andres M Somoza, Elisa Palacios-Lidon","doi":"10.3762/bjnano.15.64","DOIUrl":"10.3762/bjnano.15.64","url":null,"abstract":"<p><p>An often observed artifact in atomic force microscopy investigations of individual monolayer flakes of 2D materials is the inaccurate height derived from topography images, often attributed to capillary or electrostatic forces. Here, we show the existence of a Joule dissipative mechanism related to charge dynamics and supplementing the dissipation due to capillary forces. This particular mechanism arises from the surface conductivity and assumes significance specially in the context of 2D materials on insulating supports. In such scenarios, the oscillating tip induces in-plane charge currents that in many circumstances constitute the main dissipative contribution to amplitude reduction and, consequently, affect the measured height. To investigate this phenomenon, we conduct measurements on monolayer flakes of co-deposited graphene oxide and reduced graphene oxide. Subsequently, we introduce a general model that elucidates our observations. This approach offers valuable insights into the dynamics of surface charges and their intricate interaction with the tip.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}