Bartosz Pruchnik, Krzysztof Kwoka, Ewelina Gacka, Dominik Badura, Piotr Kunicki, Andrzej Sierakowski, Paweł Janus, Tomasz Piasecki, Teodor Gotszalk
{"title":"New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures.","authors":"Bartosz Pruchnik, Krzysztof Kwoka, Ewelina Gacka, Dominik Badura, Piotr Kunicki, Andrzej Sierakowski, Paweł Janus, Tomasz Piasecki, Teodor Gotszalk","doi":"10.3762/bjnano.15.103","DOIUrl":"10.3762/bjnano.15.103","url":null,"abstract":"<p><p>Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing nanostructures. Experimenting at the nanoscale requires instruments with sufficient resolution and sensitivity to measure various properties of nanostructures. Such measurements (regardless of the nature of the quantities being measured) are particularly problematic in the case of free-standing nanostructures, whose properties must be separated from the measurement system to avoid possible interference. In this paper, we propose novel devices, namely operational micro-electromechanical system (opMEMS) bridges. These are 3D substrates with nanometer-scale actuation capability and equipped with electrical contacts characterised by leakage resistances above 100 GΩ, which provide a platform for comprehensive measurements of properties (i.e., resistance) of free-standing FEBID structures. We also present a use case scenario in which an opMEMS bridge is used to measure the resistance of a free-standing FEBID nanostructure.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvana Piersanti, Gianandrea Salerno, Wencke Krings, Stanislav Gorb, Manuela Rebora
{"title":"Functional morphology of cleaning devices in the damselfly <i>Ischnura elegans</i> (Odonata, Coenagrionidae).","authors":"Silvana Piersanti, Gianandrea Salerno, Wencke Krings, Stanislav Gorb, Manuela Rebora","doi":"10.3762/bjnano.15.102","DOIUrl":"https://doi.org/10.3762/bjnano.15.102","url":null,"abstract":"<p><p>Among the different micro- and nanostructures located on cuticular surfaces, grooming devices represent fundamental tools for insect survival. The present study describes the grooming microstructures of the damselfly <i>Ischnura elegans</i> (Odonata, Coenagrionidae) at the adult stage. These structures, situated on the foreleg tibiae, were observed using scanning electron microscopy, and the presence and distribution of resilin, an elastomeric protein that enhances cuticle flexibility, were analyzed using confocal laser scanning microscopy. Eye and antennal grooming behavior were analyzed to evaluate the particle removal efficiency in intact insects and in insects with ablated grooming devices. The grooming devices are constituted of long setae from which a concave cuticular lamina develops towards the medial side of the leg. Each seta shows a material gradient of resilin from its basal to the distal portion and from the seta to the cuticular lamina. The removal of the grooming devices induces a strong increase in the contaminated areas on the eyes after grooming. Further studies on insect grooming can provide valuable data on the functional morphology of insect micro- and nanostructures and can represent a starting point to develop advanced biomimetic cleaning tools.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Dang Ngo, Vo Doan Thanh Truong, Van Qui Le, Hoai Phuong Pham, Thi Kim Hang Pham
{"title":"The role of a tantalum interlayer in enhancing the properties of Fe<sub>3</sub>O<sub>4</sub> thin films.","authors":"Hai Dang Ngo, Vo Doan Thanh Truong, Van Qui Le, Hoai Phuong Pham, Thi Kim Hang Pham","doi":"10.3762/bjnano.15.101","DOIUrl":"https://doi.org/10.3762/bjnano.15.101","url":null,"abstract":"<p><p>High spin polarization and low resistivity of Fe<sub>3</sub>O<sub>4</sub> at room temperature have been an appealing topic in spintronics with various promising applications. High-quality Fe<sub>3</sub>O<sub>4</sub> thin films are a must to achieve the goals. In this report, Fe<sub>3</sub>O<sub>4</sub> films on different substrates (SiO<sub>2</sub>/Si(100), MgO(100), and MgO/Ta/SiO<sub>2</sub>/Si(100)) were fabricated at room temperature with radio-frequency (RF) sputtering and annealed at 450 °C for 2 h. The morphological, structural, and magnetic properties of the deposited samples were characterized with atomic force microscopy, X-ray diffractometry, and vibrating sample magnetometry. The polycrystalline Fe<sub>3</sub>O<sub>4</sub> film grown on MgO/Ta/SiO<sub>2</sub>/Si(100) presented very interesting morphology and structure characteristics. More importantly, changes in grain size and structure due to the effect of the MgO/Ta buffering layers have a strong impact on saturation magnetization and coercivity of Fe<sub>3</sub>O<sub>4</sub> thin films compared to cases of no or just a single buffering layer.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iris Renata Sousa Ribeiro, Raquel Frenedoso da Silva, Romênia Ramos Domingues, Adriana Franco Paes Leme, Mateus Borba Cardoso
{"title":"Dual-functionalized architecture enables stable and tumor cell-specific SiO<sub>2</sub>NPs in complex biological fluids.","authors":"Iris Renata Sousa Ribeiro, Raquel Frenedoso da Silva, Romênia Ramos Domingues, Adriana Franco Paes Leme, Mateus Borba Cardoso","doi":"10.3762/bjnano.15.100","DOIUrl":"https://doi.org/10.3762/bjnano.15.100","url":null,"abstract":"<p><p>Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO<sub>2</sub>NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO<sub>2</sub>NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO<sub>2</sub>NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi-Hien Dang, Le-Kim-Thuy Nguyen, Minh-Trong Tran, Van-Dung Le, Nguyen Minh Ty, T Ngoc Han Pham, Hieu Vu-Quang, Tran Thi Kim Chi, Tran Thi Huong Giang, Nguyen Thi Thanh Tu, Thanh-Danh Nguyen
{"title":"Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites.","authors":"Chi-Hien Dang, Le-Kim-Thuy Nguyen, Minh-Trong Tran, Van-Dung Le, Nguyen Minh Ty, T Ngoc Han Pham, Hieu Vu-Quang, Tran Thi Kim Chi, Tran Thi Huong Giang, Nguyen Thi Thanh Tu, Thanh-Danh Nguyen","doi":"10.3762/bjnano.15.99","DOIUrl":"https://doi.org/10.3762/bjnano.15.99","url":null,"abstract":"<p><p>This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH<sub>4</sub> as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles.","authors":"André F Lima, Giselle Z Justo, Alioscka A Sousa","doi":"10.3762/bjnano.15.98","DOIUrl":"https://doi.org/10.3762/bjnano.15.98","url":null,"abstract":"<p><p>Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents.","authors":"Annalena Wolff, Nico Klingner, William Thompson, Yinghong Zhou, Jinying Lin, Yin Xiao","doi":"10.3762/bjnano.15.97","DOIUrl":"10.3762/bjnano.15.97","url":null,"abstract":"<p><p>Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı
{"title":"Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers.","authors":"Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı","doi":"10.3762/bjnano.15.96","DOIUrl":"10.3762/bjnano.15.96","url":null,"abstract":"<p><p>Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio
{"title":"AI-assisted models to predict chemotherapy drugs modified with C<sub>60</sub> fullerene derivatives.","authors":"Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio","doi":"10.3762/bjnano.15.95","DOIUrl":"https://doi.org/10.3762/bjnano.15.95","url":null,"abstract":"<p><p>Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C<sub>60</sub> fullerene and drug-carboxyfullerene C<sub>60</sub>-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam
{"title":"Quantum-to-classical modeling of monolayer Ge<sub>2</sub>Se<sub>2</sub> and its application in photovoltaic devices.","authors":"Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam","doi":"10.3762/bjnano.15.94","DOIUrl":"https://doi.org/10.3762/bjnano.15.94","url":null,"abstract":"<p><p>Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge<sub>2</sub>Se<sub>2</sub> (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The <i>E</i>-<i>k</i> dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge<sub>2</sub>Se<sub>2</sub>. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge<sub>2</sub>Se<sub>2</sub>-based solar cell, exhibiting a high open circuit voltage of <i>V</i> <sub>oc</sub> = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge<sub>2</sub>Se<sub>2</sub> for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}