Samuel Gelman, Irit Rosenhek-Goldian, Nir Kampf, Marek Patočka, Maricarmen Rios, Marcos Penedo, Georg Fantner, Amir Beker, Sidney R Cohen, Ido Azuri
{"title":"用于增强低分辨率和噪声扫描探针显微图像的深度学习。","authors":"Samuel Gelman, Irit Rosenhek-Goldian, Nir Kampf, Marek Patočka, Maricarmen Rios, Marcos Penedo, Georg Fantner, Amir Beker, Sidney R Cohen, Ido Azuri","doi":"10.3762/bjnano.16.83","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we employed traditional methods and deep learning models to improve resolution and quality of low-resolution AFM images made under standard ambient scanning. Both traditional methods and deep learning models were benchmarked and quantified regarding fidelity, quality, and a survey taken by AFM experts. The deep learning models outperform the traditional methods and yield better results. Additionally, some common AFM artifacts, such as streaking, are present in the ground truth high-resolution images. These artifacts are partially attenuated by the traditional methods but are completely eliminated by the deep learning models. This work shows deep learning models to be superior for super-resolution tasks and enables significant reduction in AFM measurement time, whereby low-pixel-resolution AFM images are enhanced in both resolution and fidelity through deep learning.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1129-1140"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images.\",\"authors\":\"Samuel Gelman, Irit Rosenhek-Goldian, Nir Kampf, Marek Patočka, Maricarmen Rios, Marcos Penedo, Georg Fantner, Amir Beker, Sidney R Cohen, Ido Azuri\",\"doi\":\"10.3762/bjnano.16.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we employed traditional methods and deep learning models to improve resolution and quality of low-resolution AFM images made under standard ambient scanning. Both traditional methods and deep learning models were benchmarked and quantified regarding fidelity, quality, and a survey taken by AFM experts. The deep learning models outperform the traditional methods and yield better results. Additionally, some common AFM artifacts, such as streaking, are present in the ground truth high-resolution images. These artifacts are partially attenuated by the traditional methods but are completely eliminated by the deep learning models. This work shows deep learning models to be superior for super-resolution tasks and enables significant reduction in AFM measurement time, whereby low-pixel-resolution AFM images are enhanced in both resolution and fidelity through deep learning.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"1129-1140\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.83\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.83","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images.
In this study, we employed traditional methods and deep learning models to improve resolution and quality of low-resolution AFM images made under standard ambient scanning. Both traditional methods and deep learning models were benchmarked and quantified regarding fidelity, quality, and a survey taken by AFM experts. The deep learning models outperform the traditional methods and yield better results. Additionally, some common AFM artifacts, such as streaking, are present in the ground truth high-resolution images. These artifacts are partially attenuated by the traditional methods but are completely eliminated by the deep learning models. This work shows deep learning models to be superior for super-resolution tasks and enables significant reduction in AFM measurement time, whereby low-pixel-resolution AFM images are enhanced in both resolution and fidelity through deep learning.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.